Кремнийорганические полимеры. Значение кремнийорганические жидкости в большой советской энциклопедии, бсэ Кремнийорганические жидкости


Силиконовые жидкости (кремнийорганические жидкости, силиконовые масла) - олигоорганосилоксаны, не содержащие функциональных групп для последующей полимеризации, с замкнутыми концевыми не реакционноспособными звеньями. Представляют собой жидкости с разной вязкостью, температурой застывания и стеклования, термостойкостью и другими свойствами.

Свойства силиконовых жидкостей

Силиконовые жидкости представляют собой обширную группу высокоэффективных олигомерных веществ с комплексом свойств, присущим только этому классу полимерных соединений, и не повторяющимся ни в одном из других известных в настоящее время природных или синтетических материалов.

Они обладают низкими температурами стеклования и потери текучести (-60°С … -130°С) и одновременно высокой термостойкостью (200°С … 350°С), низким давлением насыщенных паров и малой летучестью, малой зависимостью вязкости, диэлектрических и других свойств от температуры, значительной сжимаемостью и высоким давлением затвердевания, малым поверхностным натяжением (18 - 26 мН/м) и высокой подвижностью, высокой гидрофобностью и лиофильностью, малой зависимостью вязкости от скорости сдвига при сохранении широкого диапазона ньютоновского течения при вязкости до 1500 мм2/с. Для некоторых жидких силоксанов характерно значительное повышение параметров теплофизических свойств (теплоёмкости и теплопроводности) в критических и закритических областях давления и температуры.

В зависимости от состава и строения силиконовые жидкости смешиваются в любых соотношениях со многими органическими средами либо полностью не смешиваются.

Радиационная стойкость жидких силоксанов также зависит от состава и строения молекул. Они могут проявлять высокую стойкость (до 2 Мрад), либо они сшиваются с образованием геля при дозе (1.5 - 3)×104 рад.

В зависимости от состава и строения молекул силиконовые жидкости проявляют хорошую смазывающую способность для различных пар трения или вообще не обладают смазочными свойствами. Особенно существенно влияют состав и строение молекул олигомеров на реологические свойства жидкостей в широком диапазоне температур. Для некоторых структур наблюдается аномально малая зависимость вязкости от молекулярной массы, что важно для всякого рода демпфирующих устройств.

Строение органических радикалов, обрамляющих силоксановую цепь, структура силиконового каркаса, а также наличие и характер концевых групп в молекулах определяют механизм и температуру термической и термоокислительной деструкции силоксанов, что в итоге обуславливает допустимые температурные пределы эксплуатации олигомеров. Инертность или реакционная способность также зависят от строения и состава жидкости. Однако, не содержащие функциональных групп олигомеры совершенно инертны и не вызывают коррозии подавляющего числа металлов и сплавов. Они являются неагрессивными и по отношению к живым организмам.

Структура олигомеров в зависимости от метода и условий синтеза может быть разной: олигомеры линейного или разветвлённого строения, циклические или циклолинейные, либо сочетания тех и других. Они могут иметь значительную либо малую полидисперсность по молекулярно-массовому составу смеси олигомергомологов.

Область применения силиконовых жидкостей

Отмеченные особенности свойств силиконовых жидкостей определяют и области возможного применения этих соединений. Первое и основное их свойство - жидкое состояние в широком диапазоне температур - определили круг их использования в качестве жидких рабочих сред для различных приборов и механизмов, дисперсионных сред для смазочных масел и смазок, вазелинов и паст, теплоносителей. Высокие диэлектрические свойства и малая их зависимость от температуры определили использование силиконовых жидкостей в качестве жидких диэлектриков в приборах, трансформаторо- и конденсатостроении, а сочетание этих свойств с гидрофобностью - в приборах радиоэлектроники. Низкие температуры стеклования и застывания в сочетании с термостойкостью позволили успешно применить их в космической технике, самолётостроении, приборостроении; низкое поверхностное натяжение - в качестве разделительных жидкостей и антивспенивателей.

Строение силиконовых жидкостей

Жидкие полисилоксаны могут быть:

Их свойства существенно различны. Линейные молекулы могут сворачиваться в спираль. Они характеризуются высокой гибкостью и свободой вращения групп вокруг связей Si-C и Si-O, обладают мало ограниченной подвижностью и минимумом свободной энергии. Особенности строения линейных олигомеров приводят к малой зависимости их вязкости и других свойств от температуры, к низким температурам стеклования и плавления, малой энергией когезии и вязкого течения. Они обладают упругой сжимаемостью.

Олигомеры с циклическим строением молекул имеют в разной степени, деформированную от планарной структуру, и напряжение валентных углов силоксановой связи. Их свободная энергия и энтропия соответственно отличаются от олигомеров с линейными молекулами. Течение таких структур заторможенное, что проявляется в большей зависимости вязкости от температуры. Циклосилоксаны легче образуют кристаллические структуры, имеют большую плотность и коэффициент преломления, менее склонны к переохлаждению и сравнительно быстро перегруппировываются по силоксановым связям в молекулы большего размера с меньшим напряжением в цикле, что сопровождается повышением средней молекулярной массы и вязкости.

Разветвлённые олигомеры в связи с ассиметричным строением обладают более рыхлой структурой, не кристаллизуются при определённом оптимальном соотношении разветвлений, при охлаждении легче образуют клубки, их реологические свойства меньше зависят от молекулярной массы и температуры.

Полидиметилсилоксановые жидкости

Наиболее широкое применение в технике получил наиболее простой класс силиконовых жидкостей - полидиметилсилоксаны .

В основном, на практике применяются два типа полидиметилсилоксанов:


имеют промышленную марку «ПМС-р» и различаются между собой по общему числу звеньев n и m, и по соотношению этих звеньев.

Полидиметилсилоксановые жидкости циклического строения в промышленности используются редко. Одним из немногих примеров может служить жидкость ПМС-200А, представляющая собой смесь олигомеров линейной и циклической структуры, и использующаяся преимущественно в качестве пеногасящей присадки.

Линейные полидиметилсилоксаны

Молекулы линейных полидиметилсилоксанов построены регулярно, симметрично. Нарушает симметрию лишь концевая, триметилсилокси- группа, которая в силу подвижности метильных радикалов, расположенных у концевого атома кремния, образует подобие «зонтичной» структуры. Эта особенность строения линейных полидиметилсилоксанов обусловливает их способность при низких температурах (-60°С …-70°С) образовывать кристаллические структуры.

В низкомолекулярных олигомерах образованию кристаллических структур мешает близкое расположение концевых групп. В таких олигомерах кристаллизация может проявляться при -70°С … -82°С. В более длинных цепях, когда концевые группы разделены длинной, регулярно построенной цепью, способность образовывать кристаллические структуры проявляется уже в интервале температур -40°С … -60°С. В этом температурном интервале полидиметилсилоксаны теряют подвижность и кристаллизуются задолго до температуры стеклования, равной -123°С.

Гибкость и спиралевидная структура молекулы полидиметилсилоксана определяет реологические свойства олигомеров. В зависимости от величины nср. они имеют вязкость от 0.65 до 1×106 мм2/с. На практике именно вязкость выступает в роли основной эксплуатационной характеристики полидиметилсилоксанов. Вязкость полидиметилсилоксанов монотонно возрастает с увеличением их молекулярной массы.

Коэффициент преломления, плотность и поверхностное натяжение, а также энергия активации процесса вязкого течения силиконовых жидкостей возрастают по мере увеличения вязкости, асимптотически приближаясь к определённым предельным значениям, и далее остаются постоянные, независимые от вязкости. Предельные значения основных физических свойств достигаются у полидиметилсилоксанов с вязкостью порядка 500 - 1000 мм2/с. Это обстоятельство даёт основание разделить их на две группы: низковязкие, для которых наблюдается зависимость свойств от вязкости, и высоковязкие, для которых такая зависимость не наблюдается. Полидиметилсилоксаны - представители этих групп по разному ведут себя при течении: первые являются ньютоновскими жидкостями, для вторых характерно аномально вязкое течение.

Сравнительно низкие значения плотности жидких полидиметилсилоксанов (820 - 980 кг/м3) объясняется наличием в них свободного вращения метильных групп вокруг связи Si-C, которое не прекращается даже при температуре -196°С. Дополнительное разрыхляющее влияние на упаковку молекул в полидиметилсилоксанах оказывает вращение отдельных фрагментов молекул вокруг связи Si-O.

Для силиконовых жидкостей характерна высокая величина сжимаемости, что связано со спиральным строением молекулярных цепей, упруго деформирующихся под давлением. Например, относительное изменение объёма при 25°С при изменении давления от 0.1 до 10 Мпа для ПМС-1 составляет 8.8%, ПМС-100 - 7.3%, тогда как относительное изменение объёма парафиновых или фторуглеродных масел при таких условиях не превышает 4.45 - 4.95%.

Жидкие полидиметилсилоксаны обладают низким поверхностным натяжением, которое при 20°С повышается от 15.5мН/м до 21 мН/м для полидиметилсилоксанов с вязкостью 100 - 150 мм2/с и выше и далее не меняется. Низкое поверхностное натяжение силиконовых жидкостей обусловливает их хорошую растекаемость на различных поверхностях и способность проявлять водоотталкивающие свойства, что широко используется на практике.

При увеличении вязкости, температуры кипения жидких полидиметилсилоксанов возрастают до 300°С, и начиная с ПМС-100 остаются постоянными. Это явление связано с началом деполимеризации силоксановой цепи при 300°С, когда кипение олигомера связано с выделением более низкомолекулярных продуктов деполимеризации.

Полидиметилсилоксаны низкой вязкости в обычных условиях горят плохо. Полидиметилсилоксаны с большей молекулярной массой сами не горят, но при нагревании деполимеризуются с образованием летучих диметилциклосилоксанов, способных гореть.

Диметилсилоксаны разветвлённого строения

Диметилсилоксаны разветвлённого строения - диметил(метил)силоксаны - выпускаюся под марками ПМС-р и цифровым индексом, характеризующим величину кинематической вязкости. Как и их линейные аналоги, они представляют собой бесцветные прозрачные жидкости с вязкостью от 1 до 400 мм2/с. Аналогично диметилсилоксанам диметил(метил)силоксаны являются смесями молекул с разной степенью полимеризации, однако их состав сложнее состава диметилсилоксанов, так как диметил(метил)силоксаны могут содержать наряду с молекулами разной степени разветвлённости и молекулы чисто линейного строения.

Главное отличие диметил(метил)силоксанов разветвлённого строения от аналогичных по вязкости линейных диметилсилоксанов заключается в отсутствии у них склонности к кристаллизации при определённом содержании разветвляющих метилсилсесквиоксановых звеньев. Такие диметил(метил)силоксаны при охлаждении заметно теряют текучесть под влиянием небольших сдвиговых усилий при температуре около -110°С, а затем стеклуются. При нагревании диметил(метил)силоксаны сразу же переходят в вязкотекучее состояние.

Основной причиной подавления кристаллизации в диметил(метил)силоксанах считается нарушение регулярности строения силоксановых цепей при введении в их состав метилсилсесквиоксановых звеньев. Оптимальным соотношением между метилсилсесквиокси- и диметилсилокси- звеньями в олигомерах типа ПМС-р следует считать соотношение порядка 1:5, при котором наблюдается минимальная температура застывания олигомеров рассматриваемого состава независимо от средней длины их цепей в пределах 8- 50 звеньев. При меньшем соотношении метилсилсесквиокси- и диметилсилокси- звеньев в олигомерах наблюдается резкое повышение температур застывания, обусловленное, вероятно, кристаллизацией содержащихся в таких олигомерах линейных диметилсилоксановых цепей, вовлекающих в процесс кристаллизации и участки цепей с диметилсилокси- звеньями разветвлённых молекул. При большем значении указанного соотношения возрастание температур застывания происходит за счёт увеличения межмолекулярного взаимодействия в таких олигомерах и значительного нарастания их вязкости.

По физическим свойствам димелил(метил)силоксановые жидкости очень близки к своим аналогам линейной структуры. Близки не только свойства олигомеров ПМС и ПМС-р при 20°С, но и характер их изменения с изменением температуры и давления. Температурные зависимости вязкости диметил(метил)силоксанов и аналогичных диметилсилоксанов совпадают. Как и в случае диметилсилоксанов при увеличении давления наблюдается значительное увеличение вязкости и тем больше, чем ниже температура.

Диэлектрическая проницаемость диметил(метил)силоксанов несколько выше, чем у димелилсилоксанов той же вязкости, и это различие остаётся и при высоких температур.

Марки и области применения полиметилсилоксанов

Ассортимент полиметилсилоксанов

Из всего ассортимента кремнийорганических жидкостей именно полидиметилсилоксаны наиболее полно представлены на рынке. В отечественной промышленности это широко известные диметилсилоксановые жидкости, выпускаемые в соответствии с ГОСТ 13032-77 .

Жидкости ПМС и ПМС-р обладают широким набором свойств, зависящих от состава, строения и молекулярной массы. Основным показателем, определяющим области их применения, как уже было упомянуто, является кинематическая вязкость, величина которой входит в марку жидкостей. Олигомеры этой группы органосилоксанов классифицируют по областям применения следующим образом:

  • жидкости ПМС-1÷ПМС-2 используют в качестве охлаждающих и демпфирующих жидкостей в приборах до -60°С;
  • жидкости ПМС-10÷ПМС-1000 используют в качестве демпфирующих, амортизационных, гидравлических жидкостей в приборах и механизмах, а также дисперсионных сред для пластичных смазок, вазелинов и паст, хорошо зарекомендовавших себя, в частности, в запорной арматуре газопроводов;
  • жидкости с вязкостью выше 10000мм2/с используют в качестве демпфирующих жидкостей в приборах, демпферах крутильных колебаний в тепловозостроении и в качестве дисперсионных сред в высоковязких пластичных смазках;
  • жидкости с разветвлённым строением молекул ПМС-1р÷ПМС-3р используют в приборах и механизмах в качестве охлаждающих и демпфирующих до -100°С, а ПМС-10р÷ПМС-400р в качестве дисперсионных сред в низкотемпературных маслах и смазках и демпфирующих жидкостей.

Из иностранных аналогов жидкостей ПМС можно упомянуть линейные силиконовые жидкости WACKER AK SILICONE FLUID , выпускаемые немецкой фирмой WACKER , и имеющие кинематические вязкости от 0.65 до 1000000 мм2/с.

Поскольку диметилсилоксановые жидкости имеют низкие значения поверхностного натяжения (18 - 20 мН/м), они широко используются также в качестве антипенных добавок в минеральные масла. Хорошую растекаемость и отсутствие пузырей в лаках и покрытиях, а также высокую полирующую способность в политурах придают ПМС жидкости при небольших добавках в указанные материалы.

Диэлектрические свойства диметилсилоксанов и характер их зависимости от температуры указывают на высокие диэлектрические качества жидкостей ПМС. Если при этом учесть, что силиконовые жидкости не образуют токопроводящих углеродных частиц при электрическом пробое или искрении, то становится понятным их применение в качестве жидких диэлектриков в трансформаторах и других электрических устройствах. Хорошо зарекомендовала себя в качестве трансформаторной жидкости полидиметилсилоксановая жидкость POWERSIL FLUID TR 50 фирмы WACKER.

Cмазывающие свойства жидкости ПМС

Жидкости ПМС обладают невысокими смазывающими свойствами при трении сталь по стали, но некоторые сочетания трущихся пар, например, бронза - сталь, латунь - пластмассы, при гидродинамической смазке жидкими полидиметилсилоксанами работают удовлетворительно. Использование ПМС в качестве жидких сред в маслах и смазках, компаундированных разными противоизносными добавками и дисперсиями, создаёт благоприятные условия для избирательной адсорбции добавок на поверхностях трения и для образования противоизносной плёнки, позволяющей существенно повышать давление и скорости скольжения.

Жидкие полидиметилсилоксаны являются коррозионно-инертными

Жидкие полидиметилсилоксаны являются коррозионно-инертными веществами. В нормальных условиях и при нагревании до 100°С - 150°С они не вызывают коррозии и не изменяются сами в течение длительного времени при пропускании воздуха в контакте с алюминиевыми и магниевыми сплавами, бронзами, углеродистыми и легированными сталями, титановыми сплавами. Свойства жидкостей ПМС не изменяются при температурах до 100°С в атмосфере воздуха в течение 200 часов при контакте с перечисленными сплавами. При температурах 65°С - 100°С ПМС не изменяют своей вязкости и не вызывают значительного набухания или вымывания многих полимеров и полимерных материалов.

Силиконовые жидкости биологически инертны

Ещё одной полезной особенностью силиконовых жидкостей является их биологическая инертность, поэтому они широко используются в медицине, косметике и даже в пищевой промышленности.

Например, пищевая добавка Е900 представляет собой ни что иное, как жидкий полидиметилсилоксан и играет роль пеногасителя при промышленном производстве продуктов питания. Также добавка применяется как связующий агент, стабилизатор, текстуратор, антикомкователь и антислеживатель.

В основном пищевой антифламинг Е900 добавляется во фритюрные жиры и масла, некоторые виды соков, консервированные фрукты и овощи, которые выпускаются как в стеклянной, так и в металлической таре. Кроме того, вещество нередко входит в состав джемов, мармелада, повидла, желе, и других продуктов питания, основу которых составляют фрукты.

Помимо этого добавку Е900 можно встретить в изделиях, которые изготавливаются из зерновых, в концентрированных, а затем консервированных бульонах и супах. Добавляется полидиметилсилоксан и в безалкогольные напитки, вина, сидр, жидкое взбитое тесто, готовые смеси для омлетов, а также жевательную резинку.

Начиная с 70-х годов XX века силиконовые жидкости активно используются в средствах персонального ухода и декоративной косметики. Наибольшее распространение получили циклопентасилоксан D5 и полидиметилсилоксан, в косметике известный как диметикон . Среди самых распространённых задач силиконов в косметике: сохранение влаги, сохранение цвета, разглаживание волос и кожи, фиксирование средства на коже, противодействие проникновения в продукт влажности или пота. Силиконы не оставляют ощущения липкости или жирности. Их свойство удерживать средство на коже используется в водостойких продуктах, а также в солнцезащитных продуктах. Диметикон содержится в большинстве популярных шампуней Pantene.

Влияние заместителей у атома кремния на свойства олигомеров

Если в обрамление силоксановых цепей изменять органическую часть, начиная с монотонного строения молекул диметилсилоксанов только с метильными группами у атома кремния и внося в их строение элементы асимметрии, жёсткости, полярности, конформационную заторможенность и т.п., то свойства олигомеров существенно изменяются.

Это явление подтверждается изменением свойств органосилоксанов по мере усложнения структуры диметилсилоксанов путём замены в них части метильных радикалов на другие алкильные или арильные радикалы. Введение в обрамление цепи молекул, например, алкильных групп с числом атомов углерода два и более и изостроения вместо метильных у каждого атома кремния, существенно влияют на вязкость, температуры стеклования и застывания, энергию активации вязкого течения и температурный коэффициент вязкости. Увеличение числа атомов углерода в цепях алкила, то есть рост длины углеродной цепи закономерно понижает плотность, повышает температуру застывания и стеклования, коэффициент преломления, энергию активации вязкого течения и температурный коэффициент вязкости. Такие изменения могут быть объяснены, с одной стороны, увеличением рыхлости структуры молекул олигомера, приводящей к уменьшению плотности упаковки, с другой, - ростом межмолекулярного взаимодействия и уменьшением конформационной подвижности за счёт увеличения числа межмолекулярных зацеплений между длинными алкилами.

Такое же влияние на реологические свойства олигомеров наблюдается при использовании в обрамлении цепи диметилсилоксанов других видов асимметрии, например, введение атома водорода у атома кремния или разветвления за счёт трифункционального звена в цепи.

Полидиэтилсилоксаны

При замене обоих метильных радикалов у атома кремния этильными, мы сталкиваемся с новым классом органосилоксанов - полидиэтилсилоксаны , - которые приобрели большое практическое значение. Диэтилсилоксаны представляют собой смесь полимергомологов преимущественно линейной структуры общей формулы


с примесью циклических соединений [(С2Н5)2SiO]n и олигомеров разветвлённой структуры.

Диэтилсилоксаны являются прозрачными жидкостями с вязкостью от 1.5 до 1×106 мм2/с, зависящей от степени полимеризации. Эти жидкости имеют значительно более низкие температуры стеклования и застывания в сравнении с диметилсилоксанами, но влияние температуры на их вязкости существеннее. Диэтилсилоксаны имеют более высокую вязкость при 20°С, чем метилсилоксанами со сравнимой длиной цепи. Главное отличие диэтилсилоксанов заключается в экстремально низкой температуре потери текучести, которая в 1.5 - 2 раза ниже, и достигают -135°С ÷ 140°С.

В отечественной промышленности полидиэтилсилоксаны выпускаются под марками ПЭС . Они хорошо растворимы в большинстве органических растворителей и в отличие от других органосилоксанов полностью совмещаются с минеральными маслами, что обусловило широкое использование их в качестве основ масел и смазок.

Состав промышленных диэтилсилоксанов сложен, в общем случае они являются смесями молекул разной степени полимеризации и различного строения от чисто линейных до разветвлённых и циклических.

Замена в органосилоксанах метильных заместителей на этильные ограничивает свободу вращения атомов и групп вокруг связей ≡Si-O- и ≡Si-C≡. Это приводит к увеличению жёсткости цепей и тем самым препятствует реализации спиралеобразных конформаций силоксановых цепей и полной внутримолекулярной компенсации диполей полярных связей ≡Si-O-. Такое же влияние оказывает и разветвлённая структура некоторых диэтилсилоксанов.

С другой стороны, этильные заместители и разветвления препятствуют плотной упаковке цепей, что приводит к большим межцепным расстояниям в диэтилсилоксанах по сравнению с диметилсилоксанами и к снижению межмолекулярного взаимодействия.

Преобладающая область применения полидиэтилсилоксановых жидкостей:

  • ПЭС-1 ,
  • ПЭС-2 ,
  • ПЭС-3 ,
  • ПЭС-4 ,
  • ПЭС-5 ,
  • ПЭС-7 ,
  • ПЭС-С-1 (жидкость 132-24) ,
  • ПЭС-С-2 (жидкость 132-25) .

Это использование их в качестве дисперсионной среды в маслах и смзках.

Температурные пределы эксплуатации жидких ПЭС лежат в интервале температур от -70°С÷-100°С до 125°÷150°С.

В зависимости от вязкости ПЭС классифицируются по областям применения следующим образом:

  • ПЭС-1, ПЭС-2 - низковязкие с температурой стеклования до -140°С - используют в качестве охлаждающих теплоносителей и рабочих жидкостей в гидравлических системах;
  • ПЭС-3 - в гидравлических системах и в качестве компонента полировальных составов;
  • ПЭС-4, ПЭС-7 с вязкостью в пределах 42 - 48 мм2/с при 20°С и с низкой температурой стеклования (-130°С) хорошо смешиваются с нефтяными маслами и другими органическими маслами, используют в качестве основы низкотемпературных приборных и гидравлических жидкостей и масел;
  • ПЭС-5 - теплоноситель, демпфирующая жидкость в приборах, дисперсионная среда в пластичных и разделительных смазках, компоненты полировально-очистительных составов, замасливателя в производстве синтетических волокон.

На основе ПЭС созданы широко известные смазки ЦИАТИМ-221, ВНИИНП-207, 219, 231 .

Отличительной особенностью жидких полидиметилсилоксанов является полная совместимость с минеральными маслами и другими органическими продуктами. Добавка ПЭС к углеводородам улучшает низкотемпературную характеристику последних. Так смеси ПЭС-4 с маслами МС-14 и АУ имеют более низкие температуры потери текучести и удовлетворительную вязкость при температуре -50°С.

В некоторых оптимальных соотношениях смеси диэтилсилоксанов с углеводородами проявляют высокую смазочную активность. Предполагают, что механизм действия добавок органосилоксанов к нефтяным маслам заключается в разложении доэтилсилоксанов при трении с образованием двух поверхностных слоёв: первый очень высокой твёрдости (кремний) и второй - мягкий слой оксидов, выполняющий функцию смазки. Возможно также образование химических соединений другого состава, уменьшающих трение. Соотношением этих двух слоёв определяются смазочные свойства растворов диэтилсилоксанов в углеводородных средах.

При использовании смесей полидиметилсилоксанов и минеральных масел созданы приборные низкотемпературные масла марок 132-07, 132-08, 132-19, 132-20, 132-21 , приборные смазки ОКБ-122-7, ОКБ-122-7-5, МЗ-5 , морозостойкие смазки Северол-1, Унизол-3М .

Полидиэтилсилоксановые жидкости применяют в качестве рабочего масла диффузионных вакуум-насосов. Они выпускаются под маркой ПЭС-В и отличаются от органических вакуумных жидкостей повышенной термоокислительной стабильностью.

Полиметилфенилсилоксаны

С введением в обрамление цепи органосилоксанов фенильных радикалов образуется отдельная обширная группа полиметилфенилсилоксанов со специфическими заданными свойствами.

Полиметилфенилсилоксановые жидкости различаются по строению молекул и по соотношению в них метильных и фенильных радикалов.

(I)

(II)


R3-Si- = (CH3)3-Si- , (CH3)2(C6H5)-Si- , (CH3)(C6H5)2-Si- или (C6H5)3-Si-.

Цепи молекул полиметилфенилсилоксанов могут состоять из метилфенилсилокси- звеньев (I) или диметил- и метилфенилсилокси- (II) или диметил- и дифенилсилокси- звеньев. При одинаковом соотношении в них метильных и фенильных радикалов свойства их близки. Наиболее существенное влияние на свойства оказывает структура молекул - линейная или циклическая.

Линейные молекулы метилфенилсилоксанов могут иметь широкий спектр молекулярных масс, который и определяет их вязкость.

Циклические метилфенилсилоксаны не достигают значительных величин молекулярных масс. Практически используют метилфенилциклотри- или тетрасилоксаны или смесь три, тетра и пентациклосилоксанов с разным соотношением в них диметил-, метилфенил- или дефинилсилокси- звеньев.

Отечественная промышленность выпускает большое число марок полиметилфенилсилоксановых жидкостей самого разного назначения, которые можно разбить на 4 группы.

Группа I - ω,ω’-гексаметилолигодиметил(метилфенил)силоксаны , являющиеся полидисперсными смесями линейных молекул общей формулы.


с разной степенью полимеризации и разным соотношением n:m (от 10 до 1.5). Распределение метилфенилсилокси- звеньев в молекулах имеет статистический характер.

К этой группе относятся следующие марки метилфенилсилоксанов: ФМ-5 , ФМ-5 , 6АП , 133-79 (или ФМ-1322 ), Сополимер 2 , ФМ-6 , ФМ-6ВВ , 133-158 (или ФМ-1322/300 ), Сополимер 2/300 , Сополимер 5 , Сополимер 3 .

Группа II - ω,ω’-гексаметилолигометилфенилсилоксаны , также являющиеся полидисперсными смесями линейных молекул общей формулы


различной степени полимеризации. К этой группе относятся жидкость ПФМС-2/5л , ПФМС-2 и ПФМС-4 .

Группа III - ω,ω’-диметилтетрафенилолигометилфенилсилоксаны , являющиеся полидисперсными смесями молекул общей формулы


c разной степенью полимеризации. Марки промышленного выпускаемых жидкостей этой группы: ФМ-1 , ФМ-2 , 133-165 (или ПФМС-5 ), 133-57 (или ПФМС-6 ).

Группа IV - олигометилфенилсилоксаны двух марок. Олигомер 133-35 (или МФТ-1 ) представляет собой тетраметилтетрафенилциклотетрасилоксан , а олигомер 133-38 (или ПФМС-13 ) - смесь метилфенилциклосилоксанов общей формулы

Все полиметилфенилсилоксаны представляют собой прозрачные бесцветные или слегка желтоватые жидкости. Наиболее вязкие олигомеры - 133-165 и 133-57 - могут иметь окраску от светло-жёлтой до светло-коричневой.

Из иностранных метилфенилсилоксановых жидкостей хорошо себя зарекомендовали жидкости фирмы WACKER - WACKER AP 200 SILICONE FLUID , WACKER AP 1000 SILICONE FLUID , представляющие собой полидиметилсилоксановые жидкости с высоким содержанием фенильных групп, WACKER AR 200 SILICONE FLUID , а также WACKER AS 100 SILICONE FLUID с низкой долей фенильных групп.

Введение фенильных групп в состав органосилоксанов значительно повышает уровень межмолекулярных взаимодействий за счёт увеличения жёсткости цепей молекул, ограничения свободы вращения атомов и групп атомов вокруг связей ≡Si-O- и ≡Si-C≡, а также за счёт появления специфических межмолекулярных взаимодействий, обусловленных присутствием в составе рассматриваемых олигомеров ароматических ядер. В результате изменяются физические свойства олигомеров.

Основное отличие полиметилфенилсилоксановых жидкостей от полидиметилсилоксановых заключается в повышенной термоокислительной и термической стойкости. Фенилльный радикал у атома кремния в сочетании с метильным повышает термическую и термоокислительную стабильность органосилоксанов на 50°С - 70°С, повышая при этом и температуру плавления, а также зависимость вязкости от температуры. Особенно сильное влияние на термостойкость и другие свойства метилфенилсилоксанов оказывает число фенильных радикалов в концевых группах олигомеров.

Метилфенилсилоксаны обладают также повышенной радиационной стойкостью, арильные группы которых, как и в органических ариленах, рассеивают энергию излучения сопряжёнными двойными связями ароматических колец.

Основные направления практического применения метилфенилсилоксановых жидкостей:

  • высоковакуумные масла для диффузионных насосов;
  • теплоносители для высоких и низких температур;
  • дисперсионные среды для термостойких масел и смазок.

Предел допустимых температур использования метилфенилсилоксанов лежит в широком диапазоне от -20°С÷-100°С до 200°С÷350°С в зависимости от состава, степени полимеризации и содержания фенильных заместителей в молекулах.

Характерное для метилфенилсилоксанов сочетание повышенной термостойкости, низких температур стеклования, низкое давление паров, совместимость с органическими средами определяет области их применения, которые можно классифицировать по маркам олигомеров следующим образом:

  • жидкости ФМ-5, ФМ-6, ФМ-5,6АП используют в качестве дисперсионных сред низкотемпературных масел и смазок, в малонагруженных высокоскоростных шарикоподшипниках и в фреоновых холодильных машинах, а также в качестве охлаждающих теплоносителей;
  • жидкости 133-79, 133-158, Сополимер 5 и Сополимер 3 используют в качестве термостойких и низкотемпературных сред в маслах и смазках, работоспособных в широком диапазоне температур и в глубоком вакууме. Их используют также в качестве теплоносителей и жидкостей для гидравлических систем;
  • жидкости ПФМС-2/5л, ФМ-1, ФМ-2, 133-35 и 133-38 используют в диффузионных вакуумных насосах с предельным вакуумом от 133.322 нПа до 13.332 мкПа;
  • жидкости ПФМС-4, 133-165 и 133-57 используют в качестве высокотемпературных и трудновоспламеняемых теплоносителей, диэлектриков, рабочих и дисперсионных сред для смазок и масел, неподвижных фаз газожидкостной хроматографии.

Области использования метилфенилсилоксанов для получения консистентных смазок охватывают как термостойкие смазки, вакуумные антифрикционные, так и специальные приборные, электроконтактные, уплотнительные и противозадирные смазки.

Наиболее ценными и высококачественными материалами на основе метилфенилсилоксанов, не имеющими по вакуумным свойствам аналогов среди других классов химических соединений, являются диффузионные масла для высоковакуумных насосов на предельный вакуум в насосе до 13.3 мкПа.

Полярные группы или атомы в органических радикалах органосилоксанов вносят свой вклад в свойства олигомеров. Обычно их используют для повышения смазывающих свойств органосилоксановых жидкостей при сохранении основных свойств или для достижения других заданных характеристик.

Метил(галогенооргано)силоксаны

Типичными представителями таких олигомеров являются органосилоксаны с галогеном в органических радикалах - метил(галогенооргано)силоксаны . Они становятся более полярными, обладают улучшенной смазывающей способностью и ограниченной горючестью, изменяется их растворимость и совместимость с органическими средами. Одновременно повышается уровень межмолекулярного взаимодействия, вязкость и её зависимость от температуры, температуры застывания и стеклования. Однако эти нежелательные изменения компенсируются значительным повышением смазывающей способности и полярности.

Структура молекул метил(галогенооргано)силоксанов, как и других органосилоксанов, может быть линейной, разветвлённой или циклической, и все закономерности свойств олигомеров, связанные со структурой молекул, для данных олигомеров аналогичны другим органосилоксанам.

Отечественная промышленность выпускает три типа метил(галогенооргано)силоксанов:

  • метил(хлорфенил)силоксаны ,
  • метил-γ-трифторпропилсилоксаны
  • метил(галогенооргано)силоксаны, содержащие как γ-трифторпропильные, так и хлорфенильные заместители.

Все названные метил(галогенооргано)силоксаны представляют собой прозрачные бесцветные или светло-жёлтые жидкости, хорошо растворимые в таких полярных растворителях, как ацетон, метилэтилкетон, этилацетат, изопропиловый спирт, фреон-13 и т.д.

По своей природе промышленные метил(галогенооргано)силоксаны являются сложными смесями молекул, отличающихся между собой как степенью полимеризации, так и составом.

Диметилхлорфенилсилоксаны

В настоящее время в качестве смазывающих веществ широко используют диметилхлорфенилсилоксаны. Полагают, что атомы в хлорорганосилоксанах активируются в горячих точках при трении металла о металл и атомы хлора с металлом образуют тонкую плёнку хлорида металла на поверхности, что способствует снижению сил трения и предотвращает заедание. Активность атомов хлора диметил(метилхлорфенил)силоксанов при трении зависит от их числа в фенильном радикале, расположения хлорфенильных радикалов в полимерной цепи и от общего содержания хлора в олигомерах.

Исследование и сравнение смазывающих свойств органохлорфенилсилоксанов и органофторпропилсилоксанов показало, что при граничном трении механизм смазывания трущихся пар различен. Не вдаваясь в подробности, интересен конечный вывод исследования - при небольших нагрузках смазывающие свойства лучше у диметил-метил-γ-трифторпропилсилоксанов, а при высоких - у олигодимелил-метил-хлорфенилсилоксанов.

Получается, что для получения жидких олигомеров с хорошими смазывающими свойствами в широком диапазоне нагрузок целесообразно совмещение указанных двух типов органосилоксанов в одну систему.

Одновременное присутствие дихлорфенильного и γ-трифторпропильного радикалов в молекуле органосилоксана даёт эффект синергизма при граничном трении. Соответственно, диметил-(метилдихлорфенил)-(метил-γ-трифторпропил)силоксаны обладают лучшими смазывающими свойствами, чем диметил-(метилдихлорфенил)силоксаны и диметил-метил-γ-трифторпропилсилоксаны, отдельно взятые. Такие силиконовые жидкости выпускаются промышленностью (жидкости 169-36, 169-106, 169-168 ).

Итак, основными областями применения метил(галогенооргано)силоксанов являются смазочные материалы и жидкости, работающие в условиях граничного и гидродинамичного трения.

Одной из наиболее существенных областей применения являются гидравлические системы, эксплуатирующиеся при повышенных температурах (200 - 250°С). Для этих целей была создана диметил(метилдихлорфенил)силоксановая жидкость ХС-2-1, которая не вызывает коррозии при температурах до 250°С в течении 100 часов алюминиевых сплавов АЛ-9, бронзы, стали ШХ-15, 12ХНЗА.

Жидкости на основе метил(фтороргано)силоксанов с соответствующими противоизносными добавками и антиоксидантами обладают хорошими смазывающими свойствами при температурах до 300°С при использовании в узлах трения, работающих в гидродинамическом режиме.

Метилфторхророрганосилоксаны работоспособны при температурах до 250°С в гидравлических системах, гидроамортизаторах и других системах с узлами трения сталь по стали, обладая в таких условиях повышенной смазывающей способностью и стабильными характеристиками.

Метил(галогенооргано)силоксаны успешно применяют в качестве дисперсионных сред для термостойких (до 250°С - 350°С) смазок с пигментами-загустителями, литиевыми мылами и различными антиоксидантами. Некоторые из них работоспособны в вакууме до 10 нПа при температурах от -80°С до 160°С в малонагруженных подшипниках качения и маломощных редукторах, эксплуатируемых в высоком вакууме.

В последнее время установлены новые уникальные области применения метилфторорганосилоксанов и олигометилфторхлорорганосилоксанов для консервации изделий и предметов материальной культуры из дерева, керамики, кожи и др. с целью их защиты от разрушения насекомыми (древоточцами) и от действия неблагоприятных факторов окружающей среды. Эти олигомеры оказались высокоэффективными антивспенивателями в химической чистке одежды. На основе метил(галогенооргано)силоксанов разработана композиция 137-183 , имеющая название «Пластоль» для изготовления слепков и отливов палеонтологических и археологических объектов, представляющих большую научную и художественную ценность.

Препарат на основе метил(галогенооргано)силоксанов 169-116 , имеющий марку «Антишашелин», оказался биологически активным по отношению к насекомым-древоточцам, полностью уничтожая их при малых дозах (0.1% раствор), оставаясь при этом нетоксичным по отношению к теплокровным организмам.

Органоалкоксисилоксаны

Проблема повышения смазывающей способности и поверхностной активности органосилоксанов наряду с сохранением термостойкости и совместимости их с разными средами привела к исследованию и синтезу обширной группы органоалкоксисилоксанов .

На практике наиболее широко применяются органо(2-этилгексокси)силоксановые жидкости.

Основное влияние на свойства этого ряда олигомеров оказывают объём и природа органического радикала. Особенно чувствительны к этим факторам коэффициент преломления, вязкость, температура застывания, энергия активации вязкого течения, т.е. характеристики, связанные с полярностью радикала, межмолекулярным взаимодействием и конформационной подвижности молекул. Температура застывания большинства рассматриваемых олигомеров лежит ниже -100°С или около этой величины, что объясняется асимметрией строения молекул, препятствующей плотной упаковке и кристаллизации при охлаждении.

Среди разработанных и исследованных органоалкоксисиланов лучшими эксплуатационными свойствами обладают фенил-(2-этилгексокси)силоксаны (ПФГОС-4 и ПФГОС-3 ) и тиенил-(2-этилгексокси)силоксан (ПТГОС-3 ). Эти олигомеры хорошо смазывают трущиеся металлические пары, смешиваются со многими органическими и фторорганическими жидкостями и маслами, имеют высокую активность как пеногасители, инертны к фреонам и конструкционным материалам, применяемым в холодильных машинах. Они стабильны при температурах до 150°С и застывают при температуре ниже -65°÷-75°С. Такой комплекс свойств определил области применения указанных органосилоксанов.

В связи с хорошей совместимостью с фреонами олигомер ПФГОС-4 применяют в качестве смазочного масла в холодильной технике. Масло ПФГОС-4 в смеси с фреоном Ф-22 инертно по отношению к резине ИРП-1068, графиту, отверждённому бакелитовому лаку. Оно также рекомендовано для применения для тяжелонагруженных быстроходных компрессоров. Кроме того, оно испытано и рекомендовано в качестве смазочного масла для бессальниковых компрессоров с уплотнителями из фторопластовых колец.

Хорошие диэлектрические свойства олигомера ПФГОС-4 позволяют применять её для электроконтактной пасты. Масло ПФГОС-4 хорошо гасит пену в водно-гликолевых смесях. С учётом этого свойства на его основе разработаны водно-гликолевые охлаждающие жидкости для двигателей автомобилей и для литьевых машин.

Жидкость ПФГОС-3 используется в гидравлических муфтах забойных конвейеров и наиболее полно соответствует требованиям к амортизаторным жидкостям для автомобиле- и тракторостроении.

Реакционноспособные органосилоксаны

Среди различных групп кремнийорганических жидкостей особняком стоят реакционноспособные органосилоксаны, нашедшие широкое практическое применение для гидрофобизации поверхности различных материалов, - алкилгидридсилоксаны и алкилсилоксаноляты щелочных и других металлов.

Представителями первых являются метилгидридсилоксаны и этилгидридсилоксаны. В обоих случаях реакционноспособной по отношению к активной поверхности выступает ≡Si-H связь, которая легко взаимодействует с гидроксильными группами или связью кислород - металл, образуя валентную ≡Si-O- связь с поверхностью материала. Алкильный радикал, связанный с атомом кремния, при этом ориентируется от поверхности, придавая ей гидрофобные свойства. Таким образом, на поверхности образуется тончайшая плёнка полиалкилсилоксана, не смываемая и не удаляемая обычными способами.

Молекулы таких олигомеров могут быть линейными


или циклическими

Реакционная способность таких олигомеров различна. В случае алкилгидридциклосилоксана активная поверхность может не только взаимодействовать с ≡Si-H связью, но и вызывать раскрытие цикла по Si-O-Si связи и взаимодействовать со связями раскрытого цикла по типу реакции теломеризации. Такая возможность делает алкилгидридциклосилоксаны более универсальными гидрофобизаторами, что реализуется на практике в гидрофобизирующих жидкостях ГКЖ-94 и ГКЖ-94М .

Основными областями применения алкилгидридсилоксанов является строительство, текстильная и лёгкая промышленность.

В гидрофобизаторах типа алкилсилоксанолятов металлов


(R - алкил, Me - Na, Al)
реакционноспособной по отношению к поверхности строительных материалов является связь ≡Si-OMe, которая вступая в реакции замещения с гидроксидами или солями (например, цементом), также образует плёнку полиалкилсилоксана. Эта плёнка, привязанная силоксановой связью к поверхности, также имеет ориентированные от поверхности алкильные радикалы, придающие ей гидрофобные свойства.

В крупном промышленном масштабе выпускаются и нашли широкое применение алкилсиликонаты натрия: ГКЖ-10 (этилсиликонат натрия) и ГКЖ-11 (метилсиликонат натрия) . Они растворимы в воде, не имеют запаха, не опасны в обращении.

Широкое применение получили кремнийорганические гидрофобизаторы в строительстве для повышения долговечности и в первую очередь морозостойкости тяжёлого и лёгкого бетона и железобетона в тяжёлых условиях эксплуатации: при попеременном замораживании и оттаивании, увлажнении и высыхании, капиллярном подсосе и испарении солевых растворов, а также при длительном и непрерывном воздействии растворов солей.

Жидкости ГКЖ-94, ГКЖ-10 и ГКЖ-11 используют для повешения трещинностойкости и формоустойчивости тяжёлых и лёгких бетонов. ГКЖ-10 и ГКЖ-11 повышают атмосферостойкость цементно-песчаных растворов, бетонов, кирпича, гипса, туфов, известняков, а также долговечности покрытий из силикатных и известковых красок.

Заключение

Рассмотренные выше силиконовые жидкости наиболее широко применяются в промышленности в различных сферах. Тем не менее, продолжаются исследования по получению и изучению свойств многих других классов кремнийорганических жидкостей. К примеру, достаточно перспективными классами являются органосилоксановые жидкости с объёмными радикалами у атома кремния (адамантил, карборан), органосилоксаны с гетерозвеньями, гетероциклами и гетероатомами.

В связи с поставленной задачей в настоящем обзоре литературе рассмотрены опубликованные данные по свойствам исходных полидиметилсилоксановых жидкостей и каучуков, процессам, протекающим при их термической и термоокислительной деструкции, методам термостабилизации, а также методам синтеза термостабилизаторов.

Кремнийорганические жидкости и эластомеры

Общие сведения о кремнийорганических жидкостях

Кремнийорганические жидкости - органосилоксановые олигомеры или полимеры невысокой молекулярной массы, способные сохранять текучесть в высоком интервале температур. В приводятся основные типы кремнийорганических жидкостей (КОЖ), их свойства и применение. Наибольшее распространение получили КОЖ линейной R 3 SiO n SiR 3 и разветвленной R 3 Si 3 структуры с концевыми триметилсилильными группами, чаще всего полидиметилсилоксановые (R = R 1 =CH 3), полидиэтилсилоксановые (R=R 1 ==C 2 H 5) и полиметилфенилсилоксановые (R = CH 3 , R 1 = C 6 H 5).

Полидиметилсилоксановые жидкости применяются в качестве жидких диэлектриков и пластичных смазок, работающих при высоких температурах.

Эффективность использования полиорганосилоксанов показана на примерах, приведенных в . КОЖ применяются в технике в качестве гидравлических жидкостей в различных системах гидравлических приводов, а также в качестве среды в гидравлических муфтах сцепления. Ввиду незначительной вязкости полидиметилсилоксановых жидкостей при низких температурах в гидросистемах можно использовать трубопроводы меньшего диаметра. Поэтому общую массу гидросистемы при использовании КОЖ можно снизить на 45% по сравнению с аналогичными системами, работающими на минеральном масле. Полидиметилсилоксановые жидкости обладают гидрофобными свойствами, инертны по отношению к резинам и другим неметаллическим материалам и не совмещаются с нефтяными маслами.

Многие кремнийорганические жидкости используются как смазочные масла или основы для пластичных смазок, часто в сочетании с нефтяными или синтетическими органическими маслами. Такие смазки по стабильности реологических свойств в широком интервале температур превосходят нефтяные масла.

При использовании КОЖ в качестве масел и основы для пластичных смазок, работающих при повышенных температурах, необходимо учитывать термоокислительную устойчивость КОЖ. Полидиметилсилоксановые жидкости можно применять в интервале температур от -70 до 200°С, полидиэтилсилоксановые - от -60 до 175° С, полиметилфенилсилоксановые - от -60 до 250° С при длительном нагревании и до 350° С при кратковременном .

Некоторые сведения о смазках на основе КОЖ приведены в : пластичные смазки готовят обычно с использованием в качестве загустителей теплостойких мыл, например стеарата или оксалата лития, мелкодисперсного аэрогеля SiO 2 , сажи, графита. Можно также применять теплостойкие органические загустители, например, фталоцианиновые или индантреновые пигменты, арилмочевины, замещенные амиды высших жирных кислот или церезин. Пластичные кремнийорганические смазки применяют для смазывания подшипников в приборах, вакуумных кранов, клапанов, сальников и шлифов.

В рассмотрены диэлектрические характеристики полиоргано-силоксанов. Кремнийорганические жидкости используют в качестве жидких диэлектриков, заменяя ими минеральные масла. Жидкие диэлектрики представляют собой электроизоляционные жидкости, используемые в электрических аппаратах высокого напряжения, а также в блоках электронной аппаратуры. Их применение позволяет обеспечить надежную и длительную работу электрической изоляции, находящихся под напряжением элементов конструкций, и отводить тепло, выделяющееся при работе. По сравнению с минеральными маслами полидиметилсилоксаны обладают большей термостойкостью и способностью сохранять высокие диэлектрические показатели в большом температурно?частотном интервале, не образуют токопроводящих углеродных частиц при электрическом пробое или искрении.

КОЖ обладают высокими диэлектрическими свойствами, ниже приведены некоторые характеристики полидиметилсилоксановой жидкости:

  • · диэлектрическая проницаемость при 25°С е в интервале 10 2 -10 6 - 2.4 - 2.7
  • · удельное объемное электрическое сопротивление с v при 20°С- 2 10 -16 Ом*см, при 200°С - 10 13 Ом*см
  • · Тангенс угла диэлектрических потерь при 25°С и 1 кгц 0.0001-0.0002
  • · электрическая прочность при 60 гц, Мв/м или кв/мм - 14-20

Изменение частоты поля и температуры незначительно изменяют значения диэлектрической проницаемости и тангенса угла диэлектрических потерь для КОЖ. Общая характеристика электрических свойств КОЖ. показывает, что они являются малополярными диэлектриками.

В говорится о том, что высокие диэлектрические характеристики КОЖ позволяют широко использовать их в качестве жидких диэлектриков в трансформаторах пульсирующего напряжения, конденсаторах и в некоторых деталях высотного радиоэлектронного оборудования. КОЖ инертны по отношению к электроизоляционным материалам и обладают стабильными диэлектрическими характеристиками в широком интервале температур. При введении в КОЖ активных наполнителей, например аэросила (высокодиспергированного SiO 2) , получают вазелиноподобные диэлектрики. Высокая дугостойкость КОЖ объясняется тем, что в результате их термического распада образуется не уголь, а двуокись кремния, являющаяся диэлектриком. Дугостойкий консистентный диэлектрик, содержащий SiO 2 в качестве загустителя, широко применяют для герметизации авиационных свечей зажигания и для предохранения от коронного разряда. В качестве жидкого диэлектрика для пропитки конденсаторов используют КОЖ марки ФМ - 1322 и Калория - 2.

Общие сведения о кремнийорганических эластомерах

Кремнийорганические эластомеры находят все большее применение в науке и технике благодаря уникальности их свойств - термо- и морозостойкости, устойчивости к атмосферным воздействиям, физиологической инертности, высоким диэлектрическим показателям в широком температурно-частотном диапазоне и др. Однако, их прочностные показатели уступают обычным резинам и во многом определяются природой наполнителя. В связи с этим работы, посвященные получению кремнийорганических эластомеров с повышенными прочностными показателями за счет подбора эффективного наполнителя, являются актуальными.

В настоящее время для улучшения физико-механических показателей вулканизатов силиконовых резин (например, прочность при растяжении, относительное удлинение и др.) широко используются синтетические кремнеземы. Использование кремнеземных наполнителей позволяет повысить физико-механические свойства вулканизатов силиконовых резин в несколько раз.

По международной классификации в настоящее время выпускается три основных типа силиконовых резин: HTV (резины высокотемпературной вулканизации), RTV (резины комнатной вулканизации), LSR (жидкие силиконовые резины высокотемпературной вулканизации).

Остановимся на RTV - резинах, так как в представленной работе были изучены методы наполнения низкомолекулярного диметилсилоксанового каучука СКТН-Г с целью совершенствования физико-механических свойств вулканизатов на его основе. RTV - резины на основе жидких полидиметилсилоксанов, полиметилфенилсилоксанов, метилтрифторпропилсилоксанов или их сополимеров с концевыми гидроксильными или винильными группами. Вулканизацию резин осуществляют по поликонденсационному или аддиционному механизму. Выделяют два основных типа RTV: RTV1-однокомпонентные композиции (герметики), которые поступают к потребителю в готовом виде в защищенной от влаги упаковке, так как содержат сшивающий реагент. Эти композиции отверждаются под действием влаги воздуха. RTV2-двухкомпонентные композиции (компаунды), которые поступают к потребителю в виде двух компонентов - основы и сшивающего реагента. Эти композиции отверждаются только после смешения компонентов как на воздухе, так и без доступа воздуха.

В связи с широким спектром требований к технологическим свойствам исходных резиновых смесей и физико-механическим свойствам их вулканизатов в настоящее время разработан широкий ряд модификаций синтетического диоксида кремния, которые используются в качестве наполнителей силиконовых резин. Синтетические кремнеземы производятся различными способами и классифицированы согласно этим способам: пирогенные, осажденные и полученные по методу золь-гель технологий в молекулярной сетке силиконовых каучуков.

В настоящее время промышленное производство существует для пирогенных и осажденных модификаций диоксида кремния.

Способы получения и свойства синтетических кремнеземов

В основе современного способа получения пирогенного диоксида кремния является высокотемпературный гидролиз SiCI 4 в кислородно-водородном пламени при температуре 1000 0 С:

В 1941 году Degussa AG разработала и запатентовала процесс получения пирогенного диоксида кремния под маркой AEROSIL ® . Основная цель состояла в том, чтобы произвести силику (белую сажу) как альтернативу черным активным наполнителям, используемых для органических каучуков, чтобы улучшить их механические свойства. Впервые в качестве наполнителя силиконовых резин пирогенный диоксид кремния был использован фирмой Daw Corning в 1947 году.

Высокотемпературный гидролиз тетрахлорида кремния в водородно-кислородном пламени, приводит к образованию очень легкого, синевато-белого порошка диоксида кремния. В зависимости от условий сжигания образуются сферические частицы аморфного диоксида кремния средний размер которых составляет 7 - 40 нанометров.

В настоящее время производителями пирогенного диоксида кремния являются: «Evonic» («Degussa AG») под торговой маркой AEROSIL ®, «Wacker GMBH» - HDK ® , «Cabot»-CAB-O-SIL ® , «Tokuyama» - Reolosil ® , Украина - Орисил ® .

Осажденный диоксид кремния получают осаждением поликремниевой кислоты при взаимодействии силиката натрия с кислотами и последующей ее термической дегидратацией:

nNa 2 SiO 3 + 2nHCl > n + NaCl (2)

n > nSiO 2 + m/2 H 2 O (3)

При получении осажденных кремнеземов образуются сферические наноразмерные частицы, состоящие из трехмерной силоксановой сетки с высоким содержанием гидроксильных групп на поверхности, которые могут принимать активное участие в процессах поликонденсации с образованием силоксановых связей между частицами и образованием прочных агломератов - высокопористых сферических частиц микронного размера с высокой удельной поверхностью. Содержание гидроксильных групп на поверхности осажденных кремнеземов в 3-5 раза выше, чем у пирогенного кремнезема. Потери при сушке (2 часа при 105 0 С) составляют 0.5-1.5% для пирогенного кремнезема и - 3-6% для осажденного.

Размер и удельная поверхность первичных частиц, а также их агломератов сильно зависит от условий осаждения. В настоящее время разработаны технологии получения осажденных кремнеземов с размером частиц 1-15 мкм и поверхностью 50-750 м 2/ г («EVONIC (Degussa)» - SIPERNAT ® , «Rhodia» - ZEOSIL ® , «Shreeji fine chem» - UNISIL ®).

Влияние кремнеземных наполнителей на свойства RTV-композиций

На основе жидких низкомолекулярных силоксановых каучуков, содержащих концевые силанольные или винильные группы получают резиновые композиции низкотемпературной вулканизации, которые выпускаются в промышленности как герметики и компаунды. Кремнезем, в данном случае используются для загущения композиций, придания им тиксотропных свойств, а также для повышения физико-механических свойств вулканизатов.

Свойства композиций и вулканизатов на их основе можно варьировать в широких пределах за счет изменения состава и технологии их приготовления, что хорошо показано в работе . Авторами были исследованы свойства композиций на основе каучука с концевыми силанольными группами SILOPREN Е 50 (с динамической вязкостью 50000 сПз), наполненного различными типами пирогенного кремнезема AEROSIL.

Показано, что с ростом поверхности эффект загущения увеличивается и снижается экструдируемость силиконовых компаундов в результате повышения вязкости и предела текучести. Прозрачность силиконового компаунда и конечного вулканизированного продукта повышается с увеличением удельной поверхности кремнезема.

При повышении удельной поверхности AEROSIL наблюдается увеличение прочности при растяжении и сопротивления раздиру. На относительное удлинение при разрыве, твердость по Шору-А этот фактор оказывает незначительное влияние.

На примере AEROSIL R 972 показано, что при повышении содержания наполнителя от 4% до 12 вязкость и предел текучести силиконового компаунда возрастают, экструдируемость и прозрачность, соответственно, уменьшается. Однако, удовлетворительно перерабатываемый силиконовый компаунд можно получать, используя AEROSIL R 972 при более высоких степенях наполнения.

С увеличением концентрации наполнителя растут прочность при растяжении, сопротивление раздиру и твердость по Шору-А. Относительное удлинение и упругость изменяются незначительно.

Сопоставление свойств композиций на основе AEROSIL 130 (8%), его гидрофобизированных аналогов Аэросил R 972 (ДМДХС) и * VP R 810 S (ГМДС) показало, что при повышении гидрофобности AEROSIL понижается загущающий эффект, вязкость и предел текучести, экструдируемость повышается, прозрачность увеличивается незначительно. Механические свойства вулканизированных компаундов минимально зависят от гидрофобного эффекта. Только твердость по Шору-А немного понижается при увеличении гидрофобности наполнителя

В работе предложены составы RTV, вулканизированные по реакции гидросилилирования, содержащие осажденные (гидрофильный ZEOSIL ® 1165, гидрофобный ZEOSIL ® 1165 MP) и пирогенный (гидрофильный AEROSIL 200 ®) кремнеземы, которые гидрофобировались за счет введения в реакционную смесь ГМДС и воды и подробно описаны методика приготовления композиций. Состав приведен ниже:

  • · б,щ-дивинисилоксановый каучук (вязкость 1.5 Па. с) - 69-71% ;
  • · наполнитель - 24,6% AEROSIL 200 ® (пример 1) или ZEOSIL ® 1165 (пример 2) или 24.0 % ZEOSIL ® 1165 MD (пример 3);
  • · модификатор - 3.6% ГМДС
  • · вода для гидролиза ГМДС 0.47% (пример 1 и 2), 63% (пример 3) от массы смеси.

В состав также входят:

  • · сшивающий агент - олигоорганогидридсилоксан (SiH -20%, вязкость 25 сПз)
  • · платиновый катализатор Карстеда
  • · регулятор реакции гидросилилирования - этинилциклогексанол

Свойства смесей и их вулканизатов, приведены в табл. 1.

Таблица 1

Свойства смесей и вулканизатов

Из табл. 1 видно, что использование AEROSIL 200, модифицированного ГМДС придает композициям наилучшие прочностные свойства. Однако, при использовании достаточно дешевых осажденных кремнеземов, гидрофобизированных ГМДС можно получать композиты с удовлетворительной вязкостью и эластичностью. Твердость по Шору, напряжение при разрыве, прочность при разрыве незначительно уменьшается, относительное удлинение растет. По мнению авторов , применение модифицированных осажденных кремнеземов в качестве наполнителей для силиконовых резин RTV целесообразно и экономически оправдано. Влияние осажденного пирогенного кремнезема на свойства RTV-композиций также рассмотрено в работе .

Влияние кремнеземных наполнителей, полученных методом золь-гель технологии, на свойства силиконовых резиновых композиций

Золь-гель метод является эффективным способом получения композиционных материалов, наполненных наноразмерными частицами диоксида кремния, которые не образуют не разрушаемых агломератов, присутствующих в пирогенных и осажденных кремнеземах. Для получения композиционных материалов, содержащих наночастицы диоксида кремния, как правило, проводят гидролиз алкоксисиланов (в основном, тетраэтоксисилана), растворенных в полимерном материале в присутствии основного катализатора (как правило, аммиака). Образование диоксида кремния может быть представлено следующей схемой:

Si(OC 2 H 5) 4 + 2H 2 O > SiO 2 + 4C 2 H 5 OH (4)

Существуют 3 основных способа получения силоксановых композиций, содержащих наполнитель, полученный с использованием золь-гель метода.

  • · Проведение гидролиза алкоксисиланов в несшитом полисилоксане, с последующим отверждением композиций;
  • · Набухание сщитого полисилосанового каучука в алкоксисилане, с последующим гидролизом последнего в полимерной матрице;
  • · Проведение гидролиза алкоксисиланов в эмульсии полисилоксана, с последующим удалением побочных продуктов и отверждением композиций.

В работах использовали низкомолекулярный диметилсилоксановый каучук (М w 5,5 10і и 13 10і) с концевыми винильными группами (ДВК), тетраэтилортосиликат (ТЭОС), водный раствор этиламина, катализатора гидролиза - 2-этилгексаноат олова, отвердитель- Si 4 , катализатор отверждения - хлорплатиновую кислоту. Нужные количества ДВК и ТЭОС в присутствии 2-этилгексаноата олова подвергали воздействию паров водного раствора этиламина в течении 2 суток, что приводило к выделению частиц SiO 2 с размером 200-300 Е в виде однородной дисперсии. Полученную суспензию сушили и сшивали по концевым винильным группам ДВК при 23єС в течение 2-3 суток. Параллельно готовили ненаполненные композиции ДВК по аналогичной методике. В работе отмечено, что предложенный способ позволяет ввести до 62 % наполнителя и образцы вулканизатов обладают повышенными прочностными показателями.

В работах проведено сравнение свойств сшитых композиций на основе силиконового каучука с молекулярной массой 11.3 . 10 3 с гидроксильными концевыми группами (СКТН), содержащих готовый наполнитель - пирогенный диоксид кремния или продукты, полученные по золь-гель технологии. В первом случае, в каучук вводили заданное количество ТЭОС, пирогенный SiО 2, 2-этилгексаноат олова и отверждали на воздухе при 20°С в течение 3 суток. Во втором случае, в СКТН вводили ТЭОС, тетра(н-бутокси)титан (ТБТ), 2-этилгексаноат олова, смешивали в течении 24 ч при 20°С и отверждали за счет влаги воздуха. Образование наполнителя происходило в результате гидролиза ТЭОС и ТБТ в каучуке. Показано, что во втором случае, вулканизаты обладают более высокими прочностными характеристиками.

В работе исследованы свойства вулканизатов на основе СКТН с различной молекулярной массой, наполненных продуктами гидролиза алкоксисиланов(АС) в матрице полимера - тетра - (ТЭОС), винилтри - (ВТЭОС), метилтри - (МТЭОС) и фенилтриэтоксисилана (ФТЭОС). Образцы готовили смешением СКТН с АС в присутствии катализатора - 2-этилгексаноата олова с последующим выдерживанием образующихся композиций в течении 2 суток при комнатной температуре. В процессе выдерживания происходит образование сетчатого полимера за счет взаимодействия СКТН с ТЭОС и наноразмерных частиц наполнителя за счет гидролиза АС атмосферной влагой. Присутствие наполнителя, полученного в матрице эластомера, значительно повышает прочность и увеличивает энергию разрушения. Эффект усиления возрастал с увеличением содержания АС в СКТН. По усиливающей способности продукты гидролиза, исследованных АС при их эквимолярном содержании в эластомере располагались в ряд: МТЭОС<ТЭОС<ВТЭОС<ФТЭОС

В работах исследованы размеры частиц, образующихся при гидролизе ТЭОС, введенного методом набухания, в сшитом СКТН. Гидролиз проводили в присутствии различных катализаторов. Количество образовавшихся частиц наполнителя составляет 10-81%. Методом просвечивающей электронной микроскопии установлено, что с ростом продолжительности гидролиза, а также при использовании основного катализатора (этиламина) наблюдается образование мало агрегированных частиц SiО 2 малых размеров (? 200Е). Снижению размеров частиц способствует увеличение концентрации катализатора. Полученные материалы обладали большими прочностными показателями.

В работе рассмотрены свойства вулканизатов на основе высокомолекулярного и низкомолекулярного полидиметилсилоксанов в которые вводился готовый кремнеземный наполнитель, наполнитель, полученный методом золь-гель технологии гидролизом ТЭОС, растворенного в исходных и сшитых каучуках. Показано, что самые высокие физико-механические свойства имеют композиции, в которых содержится наполнитель, полученный гидролизом ТЭОС в исходных и сшитых каучуках.

Авторами исследован гидролиз ТЭОС, растворенного в сшитом СКТН в водной среде в присутствии в качестве катализаторов этиламина или аммиака. Скорость реакции и степень осаждения SiO 2 возрастают при увеличении концентраций катализатора и зависят от молекулярной массы исходного СКТН. С увеличением содержания SiO 2 резко возрастают прочность при растяжении и сопротивление раздиру.

Полидиметилсилоксановый каучук с концевыми SiOH-группами (молекулярная масса 8000) вулканизировали с помощью ТЭС и экстракцией ТГФ удаляли золь-фракцию. Образцы сшитого СКТН подвергали набуханию в ТЭС, проводили гидролиз последнего избытком воды в присутствии в качестве катализаторов оснований, кислот и солей с целью осаждения в матрице полимера SiO 2 . После высушивания образцов определяли их механические свойства. Выявлено, что использование кислых катализаторов не перспективно для получения вулканизатов, наполненных продуктами гидролиза ТЭОС методом золь-гель технологий.

С целью получения ультрадисперсных наполнителей в работах в ультразвуковом поле исследован процесс гидролиза тетраэтоксисилана (ТЭОС) или ТБТ в смеси с 50% -ной эмульсией СКТН. Для ускорения при гидролизе ТЭОС в реакционную смесь вводили водный раствор аммиака. Соотношения ТЭОС или ТБТ и эмульсии выбиралось таким образом, чтобы после удаления воды содержание наполнителя составляло 1-20%. Проведение гидролиза в водной среде ТЭОС или ТБТ в УЗ-поле показало, что образующиеся частицы имею микронные размеры. Так, размеры образующихся частиц SiO 2 составляют 0.01-0.04 мкм и TiО 2 - 0.5-1.2 мкм.

После удаления воды в образующуюся композицию добавляли сшивающий агент К-18. Для вулканизатов, наполненных продуктом гидролиза ТЭОС прочность при разрыве 0.7 МПа - 3.5 МПа, относительное удлинение 110 - 140%. Вулканизаты, наполненные продуктом гидролиза ТБТ имеют прочность при разрыве 0.3-2.8 МПа, относительное удлинение 100-160%.

На основании полученных результатов можно сделать вывод, что для получения наполнителя с наноразмерными частицами гидролиз ТЭОС необходимо проводить в полимерной матрице.

Методы синтеза осажденных и пирогенных кремнеземов, а также способы улучшения физико-механических показателей вулканизатов силиконовых резин более подробно рассмотрены нами в обзоре .

Технологии современного производства и развитие химической и косметической промышленности приводят к изготовлению продуктов, которые, казалось бы, несовместимы в способах применения.

Одним из таких удивительных веществ является силиконовое масло. Оно находит применение не только в различных отраслях промышленности, но и в косметологии.

Что такое силиконовое масло, состав

Силикон представляет собой кремнийорганические соединения. Название «силикон» для них было придумано Киппингом в Англии. Но это название не раскрывает химическое строение, а принято для идентификации веществ этого класса.

Названия, описывающие химические соединения Si-O-Si, таковы: полиорганосилоксаны (ПМС) и олигоорганосилоксаны (ПЭС). Они также отражают суть связей и количество кремниевых органических радикалов.

Олигомеры - это полимеры, имеющие сравнительно небольшую молекулярную массу, другими словами, небольшую длину молекул. К этому классу относятся кремнийорганические жидкости, к которым относятся и масла. Их можно отнести и к классу олигоорганосилоксанов, и к полиорганосилоксанам.

Состав силиконового масла представляется кремнийорганическими полимерами в виде цепочек с чередующимися атомами кремния и кислорода. Кроме того, они связаны с такими органическими радикалами, как C 2 H 5 , CH 3 , C 6 H 5 и иными.

Путем введения в цепи молекул разных органических групп возникает возможность изменения качеств и свойств полимеров в том направлении, которое требуется. Кремнийорганические полимеры, в зависимости от того, какой они имеют химический состав и структуру молекул, а также молекулярный вес, подразделяются на жидкости, лаки, эластомеры или каучуки и пластмассы.

Применение масла

Кремнийорганические жидкости, в том числе силиконовое масло, применяются для производства гидрофобного и антиадгезионного покрытия для ткани, бумаги и кожи.

В бытовой химии эти жидкости вводятся в составы мебельных, обувных политур и даже автомобильных. Они хорошо известны как строительные бытовые герметики.

В косметической промышленности кремнийорганические жидкости нашли применение благодаря инертным свойствам, отсутствию цвета, запаха и вкуса. Кроме того, они нетоксичны. Эти вещества не приводят к нарушению теплообмена кожной поверхности, не забивают ее и обладают способностью отдачи лекарственных ингредиентов. Эти жидкости широко используются, в том числе и силиконовое масло. Применение ему нашлось в кремах для бритья, лосьонах для кожи, лаках для волос, а губная помада в своем составе содержит около 5-10% масла.

В медицине широко применяются не только сами жидкости, но и произведенные на их основе изделия из кремнийорганической резины (всевозможные клапаны и сосуды).

Но более существенной сферой использования силиконовых жидкостей было и есть производство герметиков, различных покрытий, красок, клеев и прочего. Там, где применяется широкие диапазоны температур (-50…+300°C), а также требуются свойства гидрофобности, антиадгезии, диэлектрические, а также стойкость к климатическому воздействию, нашлось применение кремнийорганическим смолам, лакам, эмалям, пластмассам, клеям, каучукам, герметикам и компаундам.

Используется масло и в копировальной технике в виде фьюзерных силиконовых масел.

Свойства силиконового масла

Олигодиметилсилоксаны менее всего зависят от температуры по характеристикам вязкости.

Эти вещества выпускаются промышленностью с названием марки ПМС с добавлением цифрового индекса, который характеризует как раз величину вязкости. Она, как правило, находится в пределах от 0,65 до 2 500 000 мм2/с. Этот параметр зависит от показателя степени полимеризации.

ПМС применяют при разбросе температур от -50°C до +200°C. Они относятся к поверхностно-активным веществам и обладают хорошими демпфирующими характеристиками. Практически не подвержены испарению на открытом воздухе ПМС, имеющие вязкость свыше 50 мм 2 /с. ПМС обладают отличными диэлектрическими свойствами, их удельное сопротивление равняется при 20°C примерно 1x1015 Ом*см, а при 150°C - 1x1013 Ом*см. Они электрически прочны, этот показатель составляет порядка 15-20 МВ/м. Причем эти характеристики почти не находятся в зависимости от частоты и температуры.

Эти вещества имеют очень малую теплоёмкость, а также приемлемую теплопроводность. К примеру, у них этот показатель примерно в четыре раза ниже, чем у воды.

ПМС обладают очень малым коэффициентом поверхностного натяжения, то есть имеют отличные смачивающие свойства, они также гидрофобны.

К свойствам жидкостей малой вязкости относится и растворяемость в ацетоне, этиленгликоле, этаноле и метаноле. Но все-таки традиционными растворителями для силиконовых жидкостей являются метиленхлориды, хлорофтороуглероды, ксилен, эфир, метил-этил-кетон.

Силиконовые жидкости и силиконовое масло: характеристики

Наиболее нужными для производителя техническими характеристиками кремнийорганических жидкостей можно отметить следующие:

  • Наличие широкого диапазона рабочих температур, что дает низкую температуру застывания, а также повышает устойчивость к термоокислению. Этот параметр для длительных воздействий равен 200-250°C, а для кратковременных - 300-350°C.
  • Вещества этого класса незначительно изменяют вязкость при заметном перепаде температур и стабильны в своих свойствах.
  • Хорошие диэлектрические качества.
  • Отличные показатели химической инертности.
  • Высокие смачивающие характеристики, обусловленные низким поверхностным натяжением.
  • Практически не токсичны.
  • Слабая воспламеняемость.
  • Хорошие показатели сжимаемости и давления насыщенных паров имеет силиконовое масло.

Производители, такие как Kyosho, Alpha, Nanda Racing, Himoto, Louise, HPI Racing, Traxxas, Team Orion применяют для производства современные методы, что позволяет на высоком уровне поддерживать качество своих марок.

Промышленное использование ПМС

ПМС могут использоваться в таком качестве:

  • диэлектрические и охлаждающие жидкости в трансформаторах, выпрямителях, магнетронах и других устройствах;
  • смазка при изготовлении и экструдированой обработке изделий из пластических масс, смазка для контактирования пластика и резины, смазка ленточных конвейеров в изготовлении пищевых продуктов;
  • рабочая жидкость в гидравлических муфтах, трансмиссиях, тормозных, гидравлических и демпфирующих жидкостях;
  • составляющий компонент для производства ПАВ, которые используются в пеногасителях, в изделиях, предназначенных для организации жидкостного потока во время транспортировки;
  • теплоносители в термостатах и теплообменниках, жидкости термостабилизирующих ванн;
  • силиконовые жидкости в энергетике, трансформаторное масло ;
  • вещества для смягчения хлопковых и синтетических тканей, придающие им при обработке абразивную прочность и водоотталкивающие свойства;
  • компоненты для производства оптоволокна, оптронных устройств, в акустике;
  • ингредиенты для изготовления краски, клея, различных покрытий, герметика.

Группа ПЭС

Другой широко распространённой разновидностью кремнийорганических жидкостей являются олигодиэтилсолоксаны. Они производятся под маркой ПЭС и отличаются от ПМС более низкими температурными характеристиками кипения и застывания.

Также у них значительно повышена зависимость вязкости от температурных показателей. Параметры теплопроводности и диэлектрические качества у них примерно одинаковы.

Применяют ПЭС в таком качестве:

  • охлаждающие жидкости в гидравлике при температуре от - 70°C до + 150°C;
  • основа для производства низкотемпературных масел;
  • рабочая жидкость для электромеханизмов;
  • теплоносители в открытых системах при + 150°C- + 200°C, а в закрытых - + 180°C - + 250°C;
  • модификатор и антиадгезионная смазка при изготовлении стеклопластика, прессматериалов, пластмассы;
  • основа эмульсий антиадгезии в производстве изделий из резины;
  • основа консистентных смазок;
  • силиконовое масло - отличная база для парфюмерных кремов.

Использование масла для ухода за волосами

Индустрией косметологии в настоящее время предлагается большое количество товаров с содержанием силиконовых масел. Многие к этим продуктам относятся с недоверием, но это не умаляет их положительных свойств. Силиконовые масла входят в состав не только средств по уходу за кожей, но и за волосами.

Силиконовое масло для волос содержится в ополаскивателях, кондиционерах и бальзамах. Оно аккуратно исправляет слабую волосяную структуру, защищает кутикулу. Покрытые силиконовыми средствами волосы приобретают здоровый, ухоженный, блестящий вид и становятся гладкими, не пушатся.

Несмываемые сыворотки и лосьоны дают возможность полезным веществам свободно проникать в луковицу и питать волосы.

Токсикология кремнийорганических веществ

Кремнийорганические мономерные составы резко раздражают слизистые оболочки, в то время как кремнийорганические жидкости абсолютно нетоксичны. Это справедливо и для внутрибрюшного, и для подкожного попадания, а также в случаях местного применения. Исключение составляет гексаметилдисилоксан. Пары силиконовых жидкостей также не способны вызвать симптомы отравления, это доказано испытаниями, проводившимися ежедневным их воздействием в продолжение 10 дней.

Низкомолекулярные ПМС с низкой вязкостью проявляют раздражающее действие, если их ввести в желудок либо могут оказать острое ингаляционное воздействие. Но с увеличением параметра вязкости токсичные свойства этих продуктов падают. Жидкости с показателем вязкости от 50 мм 2 /с и больше уже не вызывают местного раздражения и токсического отравления.

Следует помнить, что обладающие в обычных условиях хорошей инертностью кремнийорганические жидкости при воздействии высоких температур или нагревании выделяют вредные летучие вещества.

КРЕМНИЙОРГАНИЧЕС КИЕ ЖИДКОСТИ

ПОЛИМЕТИЛСИЛОКСА НОВЫЕ ЖИДКОСТИ (ПМС) представляют полимеры линейного и разветвленного строения общей формулы:

(CH 3 ) 3 SiO n Si(CH 3 ) 3

Они отличаются от других кремнийорганичес ких полимеров более пологой температурной кривой вязкости. Вязкость ПМС в зависимости от их молекулярной массы может изменяться от 1,5 до 1 . 10 6 сСт. Отличные поверхностно-акт ивные свойства ПМС позволяют широко использовать их в качестве поверхностно-акт ивных и противопенных добавок, антиадгезивов, основ смазок, теплоносителей и т.д.. Кроме того, они коррозионностойк и и имеют высокие диэлектрические показатели.

Основные свойства полиметилсилокса новых жидкостей и области их применения

Марка

Вязкость при 20 о С, сСт

Температура, о С

Плотность

при 20 о С,

г/см 3

Применение

кипения при 1-2 мм рт. ст.

вспышки,

не ниже

застывания, не выше

ПМС-1,5р

1,5 – 1,7

88,5/20 мм рт. ст.

0,85

Охлаждающая, демпфирующая и приборная жидкость на температуры до минус 100 – 110 0 С. Единственный теплоноситель систем терморегулирован ия космических ракет (СТР) и хладоноситель приборов радиоэлектроники.

ПМС-20р

ПМС-100р

18 – 22

95 -105

> 250

0,96

0,98

Приборные жидкости и основы смазок для использования при температурах ниже минус 70 0 С.

ПМС-5

ПМС-6

ПМС-10

4,5 – 5,5

5,6 – 6,6

9,2 – 10,8

170-250

> 250

0,92

0,95

0,94

Охлаждающие, демпфирующие, приборные жидкости для температур до -60 о С

ПМС-20

ПМС-50

ПМС-100

ПМС-200

18 – 22

45 – 55

95 – 105

192 - 208

> 250

> 300

> 300

> 300

0,96

0,97

0,98

0,98

Охлаждающие, демпфирующие, приборные, гидравлические, разделительные жидкости. Диэлектрические среды, компоненты препаратов бытовой химии и косметики. ПМС-100 – неподвижная фаза в газо-жидкостной хроматографии

ПМС-300

ПМС-400

290 – 310

385 – 415

> 300

> 300

0,98

0,98

Основы вазелиновых паст, в виде водной эмульсии - антиадгезионные смазки для форм (в производстве резино-техническ их и пластмассовых изделий), конвейерных лент (в производстве каучука), для обработки стеклянной тары. ПМС-400 применяется в глазной хирургии и для стерилизации медицинских инструментов.

ПМС-500

ПМС-1000

480 – 520

950 - 1050

> 300

> 300

Демпфирующие жидкости

ПОЛИМЕТИЛФЕНИЛСИ ЛОКСАНОВЫЕ ЖИДКОСТИ представляют собой линейные олигомеры общей формулы:

R [М 2 SiO ] n SiO [МФSiO ] m SiR , где R =(СН 3) 3 или СН 3 (С 6 Н 5) 2 , М= СН 3 , Ф= С 6 Н 5

Полиметилфенилси локсановые (ПФМС) жидкости обладают повышенной термостойкостью, низким давлением расыщенных паров, малой испаряемостью и высокими значениями температуры вспышки. Пределы допустимых температур эксплуатации этих жидкостей в зависимости от состава колеблется от -60 до +250 о С (длительно) и до +350 о С (кратковременно) .

Основные свойства ПФМС и области их применения приведены в таблице.

Марка

Вязкость при 20 о С, сСт

Температура, о С

Плотность

при 20 о С,

г/см 3

Применение

кипения при 1-2 мм рт. ст.

вспышки,

не ниже

застывания, не выше

ПФМС-2/5л

ФМ-1

ФМ-2

15 – 19

250 – 270

445 – 490

1,01

Высоковакуумные масла для диффузионных насосов с предельным вакуумом от 133.322 нПа до 13.332 мкПа

ПФМС-4

133-165

133-57

600-1000

> 1000

1,10

1,12

Высокотемператур ные и трудновоспламеня емые теплоносители, диэлектрики, дисперсионные среды для масел и смазок, неподвижные фазы в газожидкостной хроматографии

Примечания:

Показатель преломления n D 20 для всех жидкостей колеблется от 1,451 до 1,1,58.

Коэффициент теплопроводности при 20 о С для ПФМС - от 0,135 до 0,149 Вт/(м. К).

Средняя теплоемкость ПФМС жидкостей при 30-100 о С лежит в интервале 1,57 – 1,918 кДж/(кг. К).

Диэлектрические свойства при 20 о С:

v , Ом. см 10 12 - 10 14

 при 10 3 Гц 2,7 – 3,0

tg  . 10 4 при 10 3 Гц 1 - 7

ПОЛИЭТИЛСИЛОКСАН ОВЫЕ ЖИДКОСТИ

Полиэтилсилоксано вые жидкости представляют собой смеси олигомеров в основном линейной структуры общей формулы:

Специфическими особенностями полиэтилсилоксан овых жидкостей являются их хорошая совместимость с минеральными и синтетическими маслами, хорошие смазывающие свойства, низкая температура застывания (ниже -70 0 С) и инертность по отношению к большинству конструкционных материалов.

Полиэтилсилоксан овые жидкости бесцветны, без запаха, химически инертны. Они растворимы в ароматических и хлорированных углеводородах, нерастворимы в низших спиртах и воде.

Полиэтилсилоксан овые жидкости нетоксичны, взрывобезопасны.

В настоящее время выпускают полиэтилсилоксан овые жидкости марок: ПЭС-2, ПЭС-3, ПЭС-4, ПЭС-5, Жидкость № 7, 132-24, 132-25, 132-316.

Основные свойства полиэтилсилоксан овых жидкостей (ГОСТ13004-77)

Марка

Вязкость при

20 0 С, сст

Температура, 0 С

Плотность при 20 0 С г/см 3

Температура

Застывания 0 С

Показатель преломления

Кипения 1-3 мм.рт.ст

Вспышки не ниже

ПЭС-3

14-17

150-185

0,95-0,97

1,438

ПЭС-4

42-48

185-250

0,95-1,18

1,442

ПЭС-5

200-500

>250

0,99-1,02

1,446

Жидкость №7

44-49

>190

0,96-0,98

1,442

132-24

220-300

>250

0,95-1,05

1,445

132-25

>250

0,95-1,05

1,445

132-316

250-300

>250

0,99-1,02

1,445

Области применения

Полиэтилсилоксан овые жидкости марок ПЭС-3, ПЭС-4 используются в гидравлических системах (охлаждающие и рабочие жидкости), в приборах (смазочные масла), а также служат основой низкотемпературн ых масел.

Эти жидкости обеспечивают стабильную работу приборов и механизмов в условиях Крайнего Севера. Хорошие диэлектрические свойства полиэтилсилоксан ов позволяют использовать их в качестве рабочих жидкостей в электромеханизма х. Применяются при рабочей температуре от минус 70 до 150 0 С.

Наибольший интерес представляет жидкость ПЭС-5, обладающая сочетанием таких свойств, как высокая температура вспышки, низкая температура застывания, широкий диапазон изменения вязкости, хорошая смазывающая способность.

Широко применяется в различных отраслях промышленности:

В химической и нефтехимической промышленности:

Основной компонент прядильной композиции, используемой в производстве кордной ткани для шинной промышленности. Упрочняет волокно, повышает качество шинных изделий,

Антиадгезионная смазка и модификатор в производстве пресс-материалов, стеклопластиков пластмасс,

Противопыльная присадка в производстве красителей.

Теплоноситель, работающий при 150-200 0 С в открытых системах и при 180-250 0 С в закрытых,

Основа антиадгезионных эмульсий на заводах резинотехнически х изделий,

Пластификатор в производстве резиновых изделий,

Основа консистентных смазок широкого назначения,

В парфюмерной промышленности:

Основа кремов, добавка к губной помаде и туши для ресниц,

Основа противовоспалите льных мазей для животноводства,

В авиационной и автомобильной промышленности:

Демпфирующая жидкость, жидкая смазка, основа амортизационных жидкостей, теплоноситель.

Жидкость 132-24 применяется в качестве жидкой смазки трущихся поверхностей металл-металл и металл-резина и в качестве основы консистентных смазок широкого назначения, в т.ч для авиации.

ПОЛИОРГАНОСИЛОКС АНОВЫЕ ЖИДКИЕ ДИЭЛЕКТРИКИ.

Полиорганосилокс ановые жидкости диэлектрики ((ПЭС – Д) 132-12Д ГОСТ 10916-74; ПЭС – 3Д ТУ6-02-688-76; (Силтан) 136-163 ТУ6-02-697-76) их диэлектрические характеристики мало зависят от частоты тока и температуры.

Основные свойства полиорганосилокс ановых диэлектриков приведены в таблице:

Показатели

132-12Д

ПЭС-3Д

136-163

Температура:

вспышки, не ниже

застывания, не выше

Диэлектрическая проницаемость при 20 о С и 10 3 гц,

2,4-2,8

2,0 при 10 6 гц

Тангенс угла диэлектрических потерь при 20 о С и 10 3 гц, не более

0,0003

0,005 при 10 6 гц

Удельное объемное электрическое сопротивление при 20 о С, ом, см не менее

1 . 10 12

Пробивное напряжение при температуре 15-35 0 С и частоте 50 Гц, кВ, не менее

Используются для пропитки конденсаторов и заполнения пьезодатчиков.

ПОЛИМЕТИЛЭТИЛСИЛ ОКСАНОВЫЕ ЖИДКОСТИ

Жидкости 132-234 (ТУ 6-02-1-041-92) и 132-244 (ТУ 6-02-1-019-90) представляют собой полидисперсные смеси полиэтилметилсил оксановых олигомеров с температурой кипения выше 250 о С и отличаются различным соотношением метильных и этильных заместителей и диапазонами изменения вязкости..

Основные свойства метилэтилсилокса новых жидкостей

Наименование

показателей

132-234 Нормы по

ТУ 6-02-1-041-92

132-244 Нормы по ТУ 6-02-1-041-92

1. Кинематическая вязкость, сСт, при

плюс 20 0 С

минус 60 0 С

55-75

1700-2200

50-80

2. Температура вспышки в открытом тигле, 0 С, не ниже

3. Температура застывания, 0 С, не выше

минус 85

4. Реакция среды (pH водной вытяжки)

6,0-7,0

6,0-7,0

Метилэтилсилокса новые жидкости сочетают в себе положительные свойства как метилсилоксановы х так и этилсилоксановых жидкостей. Они хорошо совмещаются с минеральными маслами и синтетическими углеводородами, нетоксичны, коррозионностойк и, имеют низкую температуру застывания ниже минус 100 0 С. Благодаря своему особому составу метилэтилсилокса новые жидкости отличаются улучшенными эксплуатационным и свойствами и являются хорошей основой низкотемпературн ых смазок, обладающих малым моментом страгивания при отрицательных температурах и работоспособных в интервале температур от -100 до +200 о С и в глубоком вакууме.

Помимо прямого назначения метилэтилсилокса новые жидкости могут быть использованы в качестве: гидравлических жидкостей для гидроприводов, гидроподъёмников, гидротормозов и систем управления в различных климатических условиях, компрессорного масла холодильных установок бытового назначения, теплоносителей и хладоагентов.

ПОЛИОРГАНОСИЛОКС АНОВЫЕ ЖИДКОСТИ С ПОЛЯРНОЙ ГРУППОЙ В ОРГАНИЧЕСКОМ ЗАМЕСТИТЕЛЕ.

Общая формула фторсилоксановых жидкостей:

Общая формула хлорсилоксановых жидкостей:

Общая формула фторхлорсилоксан овых жидкостей:

Эти жидкости представляют собой олигомеры, содержащие галоген (хлор или фтор) в органическом заместителе. В зависимости от строения и содержания полярных групп свойства олигомеров меняются в широких пределах.

Данные полиорганосилокс аны - бесцветные прозрачные жидкости, нерастворимые в воде, но растворимые в кетонах, в ароматических и хлорированных углеводородах; не вызывают коррозии металлов (сталь, алюминий, бронза и др.) в широком диапазоне температур. Пределы допустимых эксплуатационных температур определяются составом жидкости и колеблются от минус 100 до плюс 200-300 о С при продолжительной работе и до 350 о С кратковременно.

Галоид-содержащи е жидкости обладают улучшенными смазывающими свойствами по сравнению с полиметил- и полиметилфенилси локсанами, высокой стойкостью к действию ионизирующих излучений.

Основные свойства полиорганосилокс ановых жидкостей с полярной группой в органическом заместителе приведены в таблице:

Марка

Вязкость при 20 о С, сст

Температура, о С

Плотность при 20 о С г/см 3

Кипения при 1-3 мм рт.ст.

Вспышке, не ниже

Застывания не выше

С атомом хлора в органическом заместителе:

162-170

40-47

1,03-1,04

162-170ВВ

70-85

250 х)

1,03-1,04

С атомом фтора в в органическом заместителе:

161-44

161-45

161-235

161-52ВВ

38-45

>500

<30

>200

250

250

160

250 x)

>260

300

135

300

1 ,0-1 ,10

1,156

1,09-1,19

1,1400

С атомом хлора и атомом фтор в органических в органическом заместителе:

169-36

169-168

55-70

800-1400

>250

250

1,12-1,14

1,19-1,21

х) при Р=10 -3 -10 -4 мм рт.ст.

Жидкость 161-44:

Основной компонент высокотемператур ного масла ВТ-301, используется в качестве рабочей жидкости в ракетостроении, в качестве основы рабочей жидкости для смазывания компрессоров с внутренним теплоотводом для микрокриогенных систем.

Жидкости 161-45 и 161-178:

Рабочие жидкости с повышенной смазочной способностью для работы в гиросистемах гидроприводных прямодействующих электронасосных агрегатов, жидкие смазки для глубинных часовых механизмов и др. приборов повышенной надежности

Жидкость 161-52ВВ:

Жидкая смазка и основа для приборных масел и пластичных смазок, работающих в условиях глубокого вакуума. Основа эффективных пеногасителей для органических сред.

Жидкость 162-70:

Основа приборных масел, рабочая жидкость для отработки и испытаний высокотемператур ных агрегатов и гидравлических систем с рабочим интервалом температур от минус 60 о С до плюс 200 о С длительно, при 250 о С кратковременно.

Жидкость 162-70ВВ:

Приборное масло, основа пластичных и консистентных смазок, работающих в условиях глубокого вакуума и обладающие малым моментом страгивания.

Жидкости 169-36 и 169-389:

Термостойкие, с высокой смазочной способностью, с пониженной горючестью рабочие жидкости в амортизаторах различного типа(телескопические, лопастные) для наземной тяжело нагруженной транспортной техники.

Примеры применения кремнийорганичес ких жидкостей .

1. Рабочие жидкости для вакуумных насосов – жидкости марок ПФМС-2/5л, ФМ-1, 119-229

2. Высокотемператур ные теплоносители – ПФМС-4

3. Низкотемпературн ые теплоносители – ПМС-1,5р

4. Тампонажные материалы в микрохирургии глаза – субстанции «легкий силикон» и «тяжелый силикон».

Среди полиметилсилокса нов особое место занимает олигометилсилокс ан в виде субстанции «легкого силикона», используемый в качестве компонента операций, проводимых в микрохирургии глаза по поводу тяжелых форм отслоения сетчатой оболочки глаз, осложненных травмами или заболеваниями глаза и ранее относящихся к неоперабельным случаям. Для таких глаз характерно тяжелое состояние – грубая деструкция стекловидного тела, дегенеративное изменение сетчатки, помутнение хрусталика и др.

Свойства субстанции «легкий силикон»:

Вязкость при 20 о С, мм 2 /с I тип 1000 - 1500

II тип 2500 – 4500

Плотность при 20 о С, г/см 3 0,97 – 0,985

Летучесть, % масс. < 0,1

< 2,1

рН водного титрования 6 – 7

Показатели препарата в полной мере соответствуют зарубежному аналогу производства фирмы «Adatomed ».

«Легкий силикон» в процессе лечения всегда располагается в верхней части глазного яблока, что позволяет применять его при верхних разрывах и отрывах сетчатой оболочки, а также изменениях на периферии глазного дна.

На основе сополимера полидиметилсилок сана и метил--трифторпропилси локсана линейной структуры был получен вариант субстанции «тяжелый силикон». Его свойства:

Вязкость при 20 о С, спз 1000 - 4500

Плотность при 20 о С, г/см 3 1,06 – 1,08

Летучесть, % масс. < 0,1

Полидисперсность, М w /M n < 2,1

Субстанция «тяжелый силикон» используется с положительным результатом при лечении глаз, осложненных травмами и диабетической ретинопатией.

5. Пеногасители . Кремнийорганичес кие жидкие пеногасители эффективны в значительно более низких концентрациях по сравнению с органическими пеногасителями. Они обладают повышенной термостойкостью, химически инертны к большинству веществ, практически нелетучи и могут быть использованы для гашения пены в водных и неводных средах с различным значением рН – в процессах дистилляции, вакуумной разгонки, упаривания и др. Расход этих пеногасителей колеблется от 0,001 до 1 г/л. Кремнийорганичес кие пеногасители нашли применение в химической, нефтехимической, нефтеперерабатыв ающей, целлюлозно-бумаж ной, текстильной, фармацевтической промышленности.

Основные свойства жидких кремнийорганичес ких пеногасителей представлены в таблице.

6. Охлаждающая жидкость для трансформаторов . Жидкость 131-434 предназначена для использования в качестве охлаждающей рабочей жидкости в силовых пожаробезопасных трансформаторах. Выдерживает пробивное напряжение при частоте 50 Гц не ниже 50 кВ/мм.

КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ НА ОСНОВЕ КРЕМНИЙОРГАНИЧЕС КИХ ЖИДКОСТЕЙ

Силиконовые жидкости для гидроамортизатор ов атомных станций представляют собой композиции олигоорганосилок санов с присадками марок: 131-209, 133-257

Успешно используются в гидроамортизатор ах атомных станций, особенно в сейсмоопасных районах с нагрузкой от 50 до 170 тонн, а также при повышенной нагрузке от 170 до 450 тонн на отечественных атомных станциях и станциях Ближнего Зарубежья с 1985 года (Балаковская АЭС, Ростовская АЭС, Калининская АЭС, Ровенская АЭС, Армянская АЭС). Жидкости обладают уникальными свойствами и успешно эксплуатируются в течение 8 – 10 лет без замены.

Антиадгезионные отверждаемые составы – композиции на основе олигоорганосилок сановых жидкостей.

Антиадгезионные составы «горячего» (ВСК-5, 131-458, и «холодного» (СК-223) отверждения предназначены для обработки металлических пресс-форм, используемых при формовании композиционных полимерных материалов – стеклопластиков, углепластиков, боропластиков на эпоксидном связующем, жесткого пенополиуретана, полиметилметакри латов. После отверждения образуют на поверхности формы твердые прозрачные покрытия, обладающее антиадгезионными свойствами по отношению к формуемому материалу.

Используются при формовании изделий авиационного, спортивного и лечебного (линзы) назначения.

Смазочные композиции С-211 и С-236 , работоспособные в интервале температур от минус 60 0 С до плюс 200 0 С, предназначены для защиты гидравлической системы летательных аппаратов от утечек рабочей среды (шасси, закрылки и т.д.) с целью обеспечения нормальной работы внешнего оборудования, приборов. Допускается применение этих смазок в вакуумных установках, подшипниках гироскопов, в узлах трения наземных механизмов, работающих в вакууме, а также в качестве буферной среды для стеклянных оптических подвижных контактов.

Эмульсии

Полиорганосилокс ановые жидкости образуют стабильные эмульсии типа масло в воде, представляющие собой белую сметанообразную массу. Водные эмульсии кремнийорганичес ких жидкостей выпускаются 50-70% мас. концентрации и применяются в разбавленном виде. Исходная эмульсия смешивается с водой в любых соотношениях, стабильность при разведении составляет более 24 часов.

Основные свойства и области применения эмульсий приведены в таблице.

п.п.

Марка

Области применения

КЭ30-04 (50%)

Для гидрофобизации кожи, бумаги, текстильных материалов

КЭ 10-15 (30%)

Для мягчительной отделки х/б тканей

КЭ 37-18 (50%)

Для термостойкой отделки х/б материалов

Пеногасители

КЭ 10-12 (50%)

Антивспениватель для водных сред в текстильной, химической, фармацевтической и др. пром.

КЭ 10-26 (12%)

В производстве АБС-пластиков

Продукт 131-207

Пеногаситель в водных и органических средах

КЭ 10-34 (15%)

Применяется для гашения пены в водно-щелочных средах (в производстве каустической соды), в полиграфической промышленности при изготовлении печатных плат базовым методом на операциях проявления и снятия водощелочного фоторезиста в установках струйного типа, в машиностроении при обезжировании металлических изделий на машинах струйного типа.

Самоэмульгирующи йся пеногасящитй состав

139-282

Эффективный пеногаситель для водных сред

Эмульсии смазывающие и разделительные

КЭ 10-01 (70%)

Для смазки в шинной и резинотехническо й пром., в производстве изделий из пластмасс

КЭ 60-09 (50%)

Смазка в производстве оболочковых форм и стержней из термореактивных смол, для антиадгезионной обработки волокнистых материалов

КЭ 60-50 (50%)

Антиадгезионный состав для обработки металлических пресс-форм в производстве автопокрышек и производстве термопластов, в качестве антиадгезионного покрытия для диафрагм многоразового действия

КЭ 10-16 (50%)

Для силиконирования резиновых пробок для флаконов с антибиотиками

КЭ 20-03 (70%)

Как антиадгезив в пр-ве РТИ, на ЖБИ при изготовлении потолочных плит

Масла и смазки

Пластичная смазка ЦИАТИМ-221 – на основе полиэтилсилоксан овой жидкости. Температурный диапазон эксплуатации от -60 до +150 о С (кратковременно до +180 о С). Смазка нерастворима в воде, химически стойка и инертна по отношению к резинам и другим полимерным материалам. Смазка хорошо зарекомендовала себя в подшипниках качения, а также широко используется в парах трения резина-металл для смазывания резиновых уплотнений пневмоцилиндров. Ее широко применяют в агрегатных подшипниках летательных аппаратов различных типов. Смазка успешно используется в подшипниках авиационных электромашин, приборных подшипниках и малонагруженных редукторах. Как приборную смазку ее можно использовать при атмосферном давлении и в вакууме.

Пластичная смазка ОКБ-122-7 – на основе полиэтилсилоксан овой жидкости Температурный диапазон применения от -60 до +120 о С. Смазка характеризуется высокой водостойкостью, коллоидной и химической стабильностью, а также хорошими защитными свойствами. Смазка получила широкое распространение в качестве многоцелевой приборной смазки для авиационных и др. электромашин, точных механизмов, прецизионных подшипников и т.д.

Масла 132-08, 132-20 -
на основе композиции полиэтилсилоксан овой с минеральными маслами. Используются в качестве низкотемпературн ых приборных масел.

не имеют запаха, сильно различаются по вязкости, температуре кипения и замерзания. Они очень термостойки и если горят, то с большим трудом, мало подвержены воздействию воды, большинства химических и физических факторов, разрушающих обычные органические материалы. В свою очередь, и они очень мало влияют или не влияют совсем на большинство таких органических материалов, как пластмассы, каучуки, краски или живые ткани и организмы. Кремнийорганические жидкости являются хорошими электроизоляционными материалами, прозрачны и обладают гидрофобными свойствами.

Такое редкое сочетание физических свойств позволяет использовать их в присадках для моторных масел, для изготовления различных смазочных веществ, гидравлических и демпферных жидкостей, используемых в широком диапазоне положительных и отрицательных температур, в кулинарии в составе варенья и джемов (для предупреждения вспенивания), в косметике, лакокрасочных покрытиях, для пропитки одежды и обивочных тканей, в пленках, покрывающих стенки сосудов для хранения некоторых жидких лекарств, чувствительных к контакту со стеклянной поверхностью, в составе мебельных и автомобильных полиролей, медицинском оборудовании, производстве асфальта и т.д. Тонкие пленки, оставляемые после обработки поверхности кремнийорганическими полиролями и пропитанными ими полировальными тканями, обладают исключительными пыле- и водоотталкивающими свойствами. Поверхность после такой обработки не смачивается водой и легко очищается от грязи.

Кремнийорганические полимерные жидкости используются и в чистом виде. Точность чувствительных приборов и устойчивость их к повреждениям часто повышаются, если в качестве амортизирующих жидкостей применяются кремнийорганические полимеры. Хорошо подобранная жидкость устраняет нежелательное дрожание и скачки стрелки, даже если прибор испытывает значительные вибрации. Кремнийорганические жидкости позволяют снять вибрацию маховиков в двигателях различных типов от автомобильных моторов до локомотивных дизелей. Кремнийорганические полимеры обладают хорошей сжимаемостью, что дает возможность применять их в жидкостных амортизаторах самолетных шасси.

Поскольку большинство органических материалов не прилипает к кремнийорганическим полимерам, кремнийорганические жидкости часто используют в виде пленок, чтобы облегчить отделение готового изделия от формы (при формовании резин или пластмасс и при литье металлов под давлением).

Термо- и водостойкость кремнийорганических жидкостей вместе с их отличными электроизоляционными свойствами и устойчивостью к пробою в электрических полях позволяет применять их в изоляции свечей авиадвигателей, в радио- и рентгеновском оборудовании, антеннах, переключателях, системах зажигания судовых двигателей, аккумуляторных батареях и электрических кабелях. Они также обеспечивают длительный срок и надежность работы конденсаторов и небольших трансформаторов, предназначенных для использования при высоких температурах.

Жидкости, в молекулах которых к каждому атому кремния присоединены одна метильная группа CH 3 и один атом водорода H

нашли широкое применение для обработки (аппретирования) текстиля. Ткани, обработанные ими, имеют дорогой вид и приятны на ощупь, к тому же приобретают водоотталкивающие свойства. На них не остается пятен от водосодержащих жидкостей - молока, безалкогольных напитков, кофе и даже чернил. Более того, силиконовый аппрет не удаляется ни стиркой, ни химической чисткой. Эти преимущества чрезвычайно ценны для одежных и обивочных тканей.

Смолы.

Кремнийорганические смолы благодаря своим превосходным качествам находят разнообразное применение. Исключительная гидрофобность, термостойкость и другие ценные качества материалов на их основе позволили повысить надежность работы машин и оборудования, уменьшить их вес, сократить расход материалов и способствовали созданию новых более совершенных электроизоляторов, защитных покрытий и т.д. Ниже указаны основные области применения кремнийорганических смол.

Смолы для покрытий

используются в производстве красок, лаков и эмалей для улучшения внешнего вида и защиты объектов от коррозии и от воздействия высоких температур (например, в случае металлических дымовых труб).

Связующие для слоистых материалов

применяются для соединения в блоки большого числа слоев бумаги, ткани, асбеста или стеклоткани с целью получения прочных, надежных листовых материалов – слоистых диэлектриков, используемых для изготовления электрических панелей, изоляторов и прокладок в высоковольтных трансформаторах.

Смолы для разобщающих покрытий

используют там, где требуется «нелипучая» (антиадгезионная) поверхность. Примерами служат покрытия для противней в пекарнях и для вафельниц.

Водоотталкивающие смолы

применяют в составах для пропитки или обмазки каменной кладки и для получения водостойкого бетона.

Формуемые смолы

сходны со связующими для слоистых материалов с тем лишь различием, что в них вместо ткани или бумаги используются наполнители. Этим смолам можно придавать самую сложную форму. Из них штампуют втулки, шестерни, детали электрических переключателей, разъемов, патронов, электронного оборудования и моторов.

Электроизоляционные материалы,

сделанные из кремнийорганических смол, термостойки, устойчивы к озону и агрессивным средам. Переход на детали из таких смол позволяет улучшить технические характеристики и долговечность электрооборудования.

Эластомеры.

Кремнийорганические полимеры с большими молекулярными массами после соответствующей термической обработки сшиваются поперечными связями, возникающими между их молекулами, с образованием силиконового каучука, при дальнейшей вулканизации которого получаются эластомеры, почти неотличимые от резин, получаемых из натурального каучука. В зависимости от степени сшивания можно изменять свойства (эластичность, прочность, твердость и т.п.) получаемых материалов. Силиконовые резины эластичны при растяжении и по отскоку. Их можно отформовать в листы, трубы или изделия сложной формы, а также превратить в массу, затвердевающую при комнатной температуре. Они сохраняют эластичность при достаточно низких температурах, когда обычная синтетическая резина становится хрупкой, и при довольно высоких температурах, когда обычная резина превращается в клейкую массу. Они также не подвержены старению, воздействию погоды, воды, электричества, большинства кислот, щелочей, солей и масел.

Такие свойства полиорганосиликоновых эластомеров неоценимы для многих специальных целей. Неполный список изделий из них включает: прокладки и заглушки в домашних паровых утюгах и тостерах; изолирующие трубки для защиты свечей зажигания и электрооборудования в автомобилях, самолетах и судах; изоляционные втулки для конденсаторов и трансформаторов; изоляторы для наружной осветительной арматуры, электрических печей и нагревателей, моторов и навигационных систем; упругие уплотнители и замазки; покрытия для тканей из стеклянного и асбестового волокна и герметизирующих прокладок для самолетов, летающих на больших высотах .

Химические свойства.

Силоксаны

Два атома кремния, связанные таким образом, образуют дисилоксан, три - трисилоксан; полисилоксан содержит в молекуле большое число атомов кремния. Замкнутое кольцо из атомов кремния и кислорода

образует циклосилоксан (в данном случае - циклотрисилоксан, поскольку это циклическая структура с тремя атомами кремния).

К свободным связям кремния (показанным в этих примерах черточками) могут присоединяться другие атомы кислорода. Если все связи кремния присоединены к кислороду, образуя регулярную структуру, то мы имеем дело с диоксидом кремния (кремнеземом или кварцем) SiO 2 – одним из наиболее распространенных соединений в земной коре. С кремнием могут быть связаны небольшие органические группы. С метильными группами (– CH 3) образуются метилсилоксаны (или метилсиликоны) – очень ценные химические продукты. Если каждый атом кремния соединен с тремя метильными группами, образуется гексаметилдисилоксан:

Это летучая жидкость, внешне напоминающая бесцветный бензин.

Две метильные группы присоединены к каждому атому кремния в самых ценных продуктах из всех типов промышленных силиконов - в циклических и линейных силоксанах, примерами которых могут служить октаметилциклотетрасилоксан (I) и полидиметилсилоксан (II):

Известны способы превращения циклосилоксанов в полидиметилсилоксаны, которые могут состоять из 15 000 и более диметилсилоксановых единиц. Можно не допустить образования молекул полидиметилсилоксанов столь большого размера, добавляя вещество, содержащее триметилсилоксановые единицы, чтобы оборвать рост полидиметилсилоксановой цепи при достижении ее желаемой длины. При этом получается одна из разновидностей кремнийорганических жидкостей со структурой

Вязкость таких соединений возрастает по мере увеличения n , чему соответствует переход от очень подвижных, похожих на бензин, жидкостей к более вязким маслам и, наконец, к смолообразным веществам. Если к кремнию присоединена только одна органическая группа, то возникает сетчатая структура, характерная для полисилоксановых смол:

Обычно в производимых промышленностью таких смолах R – это метильные или фенильные (C 6 H 5) группы.

Силоксаны могут быть получены сочетанием структурных единиц всех указанных типов, т.е. с одной, двумя, тремя органическими группами при кремнии или вообще без них. Органические группы могут быть одинаковыми или представлять собой комбинацию различных типов групп. Изменяя тип и число групп при кремнии, можно получить почти бесконечное разнообразие структур. В большинстве кремнийорганических полимеров такими группами обычно являются метил, фенил или их комбинация, подобранная для получения определенных свойств.

Историческая справка.

Созданию большого разнообразия кремнийорганических соединений, выпускаемых современной промышленностью, предшествовала работа многих химиков в течение более 150 лет. Начало положил Й.Берцелиус открытием кремния (1823) (см . КРЕМНИЙ) . Он показал, что кремний воспламеняется и энергично сгорает в токе горячего газообразного хлора с образованием жидкого вещества с удушливым запахом. Это тетрахлорид кремния SiCl 4 – очень реакционноспособное соединение. С водой тетрахлорид кремния легко образует диоксид кремния и соляную кислоту:

SiCl 4 + 2H 2 O ® SiO 2 + 4HCl

В 1844 французский химик Эбельман показал, что SiCl 4 реагирует со спиртом, образуя приятно пахнущую жидкость – тетраэтилортосиликат (тетраэтоксисилан), применяемый в наше время в больших количествах в производстве кремнийорганических полимеров:

SiCl 4 + 4C 2 H 5 OH ® Si(OC 2 H 5) 4 + 4HCl

В 1857 Ф.Вёлер нагрел кремний с хлороводородом и получил дымящую жидкость - трихлорсилан HSiCl 3 , еще один важный промежуточный продукт для производства кремнийорганических полимеров.

Ш.Фридель, профессор Сорбонны, и Дж.Крафтс, студент из Бостона, обучавшийся в Париже, сообщили в 1863, что ими получено соединение, в котором органический радикал присоединен непосредственно к кремнию, и поэтому считается, что именно эти исследователи осуществили самый важный синтез в истории кремнийорганических соединений. Использованный ими метод в наше время сочли бы трудоемким, но он привел к успеху. Они приготовили воспламеняющееся на воздухе жидкое соединение цинка, диэтилцинк, смешали его с тетрахлоридом кремния и запаяли смесь в стеклянную трубку, которую нагревали при 160° C:

2Zn(C 2 H 5) 2 + SiCl 4 ® 2ZnCl 2 + Si(C 2 H 5) 4

Полученное ими новое соединение кремния – тетраэтилсилан, в противоположность любым его ранее известным жидким соединениям, оказалось очень инертно: вода, кислоты и щелочи на него не действовали. Эта работа привлекла внимание молодого немецкого химика А.Ладенбурга. Ладенбург нашел способ управления реакцией с диэтилцинком, так что стало возможным по желанию присоединять к кремнию одну, две, три или четыре этильные группы. Полученный им диэтилдиэтоксисилан (C 2 H 5) 2 Si(OC 2 H 5) 2 реагировал с водой, образуя спирт и маслянистую жидкость:

(В диэтилдиэтоксисилане этильные группы, присоединенные непосредственно к кремнию, действительно связаны очень прочно, но этоксильные группы легко удаляются водой c образованием спирта.) Полученная жидкость разлагалась только при очень высоких температурах и не затвердевала при температурах много ниже точки замерзания воды. Так в 1872 Ладенбург синтезировал предшественник современных промышленных кремнийорганических полимеров, но потребовалось много усовершенствований, прежде чем стало возможным развитие промышленности кремнийорганических полимеров.

Заметный вклад в исследование кремнийорганических соединений в период 1898–1939 внес Ф.Киппинг из Ноттингемского университета в Англии. В конце 1930-х годов лишь немногие химики осознали огромную потенциальную ценность полисилоксанов. Среди них выделялись Дж.Хайд («Стекольные заводы Корнинга») и Р.Макгрегор из Института Меллона в США и К.А.Андрианов в России.

В 1945 Ю.Рохов обнаружил, что пары органических хлоридов реагируют с нагретым кремнием, образуя органохлорсиланы. Процесс наиболее гладко протекает с метилхлоридом. В идеальном случае реакция описывается следующим уравнением:

2CH 3 Cl + Si ® (CH 3) 2 SiCl 2

Процессом можно управлять, благоприятствуя этой реакции, но во всех случаях образуются побочные продукты CH 3 SiCl 3 , (CH 3) 3 SiCl, SiCl 4 , HSiCl 3 , CH 3 SiHCl 2 , Si 2 Cl 6 и многие другие соединения. Почти все они могут быть использованы. Для разделения продуктов смесь перегоняют, а полученные вещества применяют для синтеза разнообразных кремнийорганических полимеров. Процесс удобен для крупномасштабного производства кремнийорганических соединений. Это открытие вызвало новый взрыв интереса к химии и технологии кремнийорганических полимеров.