Подарки от природы: биотопливо. Подарки от природы: биотопливо Производства био нефть из микроводорослей


Экология потребления.Наука и техника:Статья рассказывает о реальности и перспективах пищевого и энергетического использования водорослей, экономических и экологических аспектах производства водорослевого биотоплива.

Водоросли относятся к числу наиболее быстрорастущих живых организмов, что не могло не вызвать интереса к их использованию, как в пищевых, так и непосредственно энергетических целях - в качестве биотоплива. Активные исследования и культивирование водорослей идут начиная с 1960-х годов как в мире, так и в России. Статья рассказывает о реальности и перспективах пищевого и энергетического использования водорослей, экономических и экологических аспектах производства водорослевого биотоплива.

Водоросли в системе живых организмов

Начиная разговор о водорослях и их ценности для энергетики, нельзя не упомянуть, что вся энергия на Земле, за исключением приливной и геотермальной, является прямой или трансформированной энергией солнечных лучей.

Нагревание Солнцем поверхности суши приводит к движению воздуха, что создаёт ветряную энергию. В свою очередь, ветер на поверхности океана создаёт волновую энергию. Нагревание Солнцем водной поверхности ведёт к испарению воды и создаёт круговорот воды в природе, без которого не было бы энергии движущейся воды.

Наконец, без Солнца невозможны жизнь, прирост биомассы и биоэнергия. Более того, нефть, газ, уголь, торф - всё это именно биомасса, в различной степени трансформированная, и тоже производная от солнечной энергии.

Что касается водорослей, то эта группа живых организмов создаёт, без преувеличения, фундамент жизни на Земле, непосредственно используя солнечную энергию для роста.

Водоросли (лат. Algae) в обиходном понимании - это растения, связанные с водной средой обитания, что, однако, не всегда так. Водоросли - весьма неоднородная совокупность. Не все водоросли живут только в воде, равно как и не все водные растения относят к водорослям.

Живые организмы классифицируются различными способами. Принятая в настоящее время классификация включает два крупнейших подразделения (таксона) или две империи живых организмов:

1. Вирусы - доклеточные организмы.

2. Клеточные организмы. Клеточные организмы разбиваются на два основных таксона менее высокого порядка (надцарства или домена):

1. Прокариоты - организмы без выраженного ограниченного мембраной клеточного ядра.

2. Эукариоты - организмы с клеточным ядром.

Прокариоты включают в себя два царства организмов - археи или архебактерии и бактерии или эубактерии. Эукариоты - более обширная группа живых организмов, включающая уже известные царства грибов, растений и животных.

Организмы, объединяемые понятием «водоросли», находятся почти на всех ступенях таксономической лестницы клеточных организмов - от бактерий до растений (табл. 1) - и включают две основные группы: прокариотические водоросли - царство в домене прокариот, включающее подцарства (по другой классификации - отделы) сине-зелёных и прохлорофитовых водорослей; настоящие водоросли - подцарство в царстве растений, включающее ряд отделов.

Интересно, что таксономическое положение прокариотических сине-зелёных водорослей остаётся дискуссионным вопросом. Микробиологи Роже Стениер и Корнелис Ван Ниль, сформулировавшие теорию деления живых организмов на два глобальных домена - прокариоты и эукариоты, предложили считать термины «прокариот» и «бактерия» эквивалентными . С этого момента синезелёные водоросли классифицируются двояко - как бактерии (цианобактерии) и как растения, будучи фотосинтезирующими организмами. Кроме того, все клеточные живые организмы можно разбить на одноклеточные (простейшие, низшие, протисты) и многоклеточные (высшие) и выстроить классификацию на этой основе, выделяя простейших в отдельное царство. Среди водорослей есть и одноклеточные, и многоклеточные, а также колониальные организмы, образующие систему взаимосвязанных клеток.

Размеры водорослей варьируются в широком диапазоне - от 0,5–1 мкм (10–6 м) у ряда цианобактерий до десятков метров у некоторых растительных форм водорослей. Водоросли живут как в морских, так и в пресных водах, а также в почве.

Общим свойством зелёных растений и водорослей, в том числе прокариотических, является способность к фотосинтезу или преобразованию электромагнитной энергии солнечных лучей в энергию химических связей органических веществ, осуществляемому на свету благодаря наличию фотосинтезирующих пигментов - хлорофиллу у растений, бактериохлорофилла и бактериородопсина у прокариот.

Реакция фотосинтеза - трансформация углекислого газа и воды в глюкозу и кислород - выглядит так:

Для зелёных растений и водорослей фотосинтез является источником питания и роста. В свою очередь, именно фотосинтезирующим организмам мы обязаны появлением и сохранением пригодной для дыхания атмосферы.

Фотосинтезирующие организмы принадлежат разряду автотрофных, использующих для питания непосредственно неорганическое вещество, преобразуемое ими в органическое. Остальные организмы, в том числе животные и человек, - гетеротрофные, неспособные синтезировать органическое вещество из неорганического. Для них, в свою очередь, автотрофы создают необходимую кормовую базу и являются источником физического существования. Таким образом, водоросли относятся к организмам, с одной стороны, обязанным своим существованием непосредственно Солнцу, с другой - являющимся основой всей остальной органической жизни на Земле.

В связи с этим необходимо рассмотреть ключевые количественные показатели - объём и прирост биомассы растений и водорослей. Биомасса Земли в целом оценивается в 1,3 трлн тонн, из которых на фитомассу (растения) приходится более 1,2 трлн тонн, или более 95 % всей земной биомассы (табл. 2).

Отметим, что если в категориях биомассы рассматривать человека и население Земли, то она при населении около 7 млрд человек составит величину порядка 300 млн тонн - примерно 1/3000 или 0,03 % от всей земной биомассы и около 1 % от всей зоомассы.

При этом ежегодный прирост биомассы составляет 17 % от общей её величины или около 220 млрд тонн, в том числе океанической биомассы - более 87 млрд тонн.

Наиболее высокие скорости размножения и, соответственно, прироста биомассы характерны для мельчайших организмов, к числу которых относится и большая часть водорослей. В частности, только биомасса фитопланктона (плавучих морских водорослей) в Мировом океане оценивается (в сыром весе) в 1,5 млрд тонн, а его годовой прирост - в 550 млрд тонн. Иными словами, за год масса водорослей способна вырасти в 350 раз. По некоторым оценкам, на водоросли приходится 2/3 всей биомассы Земли. Точные же подсчёты в данном случае вряд ли возможны.

С наибольшей скоростью размножаются мельчайшие одноклеточные водоросли или микроводоросли - промежутки времени между делениями клеток в благоприятных условиях могут сокращаться до 20 минут и даже меньше. В этом случае всего за сутки одна клетка теоретически может дать примерно 5 × 1021 потомков. При массе одной клетки около 665 фемтограмм (6,65 × 10–16 кг или 6,65 × 10–13 г) их общая масса в течение суток превысит 100 тонн, а величина, равная всей нынешней биомассе Земли, будет достигнута ещё 12 часов спустя. Даже в реальных, а не идеальных условиях высокая скорость размножения водорослей, покрывающих поверхности водоёмов, хорошо известна, а при выращивании в пруду микроводоросль спирулина (Spirulina), как показывает практика, удваивает свою биомассу каждые двапять дней.

Водоросли как пища и как топливо

Благодаря столь огромному потенциалу размножения - при этом за счёт почти исключительно солнечной энергии и воды, без потребления органических веществ! - микроводоросли ещё несколько десятилетий назад стали объектом пристального внимания и исследований возможности использования в качестве пищевого и энергетического продукта.

Перспектива культивирования водорослей с ежегодным сбором десятков и сотен тонн биомассы с 1 га водной поверхности - в разы и даже на порядки больше, чем урожайность любой известной сельскохозяйственной культуры, и без существенных затрат - не могла не выглядеть крайне заманчивой.

Первоначальным было пищевое использование водорослей, имеющее давнюю историю. В частности, известно, что ацтеки, инки, а также народы Центральной и Восточной Африки, живущие в районах озера Чад и Великой рифтовой долины, употребляли в пищу лепёшки из высушенной спирулины.

В связи с этим, начиная с 1960-х годов в мире появляется интерес к водорослям (большей частью, к спирулине), прежде всего как пище - и для животных, и для человека. Был также обнаружен ряд полезных свойств водорослей, связанных с укреплением иммунитета, профилактикой и лечением ряда заболеваний, повышением продуктивности домашнего скота и сельскохозяйственных культур.

Во второй половине 1970-х годов спирулина в виде порошка или капсул появилась на мировых продовольственных рынках, где она презентовалась в качестве нового естественного продукта - энергетической натуральной пищевой добавки с высоким содержанием белка, то есть «пищи будущего».

В США предприятия по выращиванию микроводорослей в искусственных прудах, работающие в экспериментальном режиме, были созданы в 1977 году. Первые пруды появились в пустынной местности в графстве Имперская долина (Imperial Valley) на юго-востоке штата Калифорния. Условия там благоприятны благодаря сочетанию тёплой и солнечной погоды с возможностью подачи воды из реки Колорадо.

Параллельно выращиванием водорослей занялась Япония, далее в процесс включились предприятия в Индии, Китае, Таиланде, Тайване и Мексике.

В течение 1980-х годов и первой половины 1990-х годов производство микроводорослей в мире выросло до 1000 тонн. К концу 2000-х годов мировые объёмы производства микроводорослей, включая спирулину, хлореллу (chlorella), дуналиеллу (dunaliella), хематококкус (haematoccocus), достигли 10 тыс. тонн в сухом весе.

Почти в это же время, в 1980–1990-е годы, в СССР и России начали исследование и культивирование спирулины в пищевых целях, для использования в качестве биодобавок, как в пищу человеку, так и в корм для скота и птицы.

В этих работах активное участие принимали также и сотрудники Научно-исследовательской лаборатории возобновляемых источников энергии (НИЛВИЭ) географического факультета МГУ имени М. В. Ломоносова. Был установлен положительный эффект использования спирулины, в частности, в качестве пищевых добавок для птицы. В настоящее время в России существуют отдельные небольшие производства спирулины.

Что касается возможностей непосредственно энергетического использования водорослей - для получения биотоплива, то активные исследования в этом направлении начались также в 1960–1970-е годы. Лидерами в этих изысканиях стали, в частности, Французский институт нефти (Institut francais du petrole, IFP) и Национальная лаборатория возобновляемой энергии (National Renewable Energy Laboratory, NREL) Министерства энергетики США (Department of Energy, DoE).

NREL в 1978 году начала программу исследования возможностей получения топлива из микроводорослей Aquatic Species Program (буквально - Программа водных видов или водной флоры). Она была свёрнута к 1996 году, когда обнаружилось, что биотопливо из водорослей будет слишком дорогим по сравнению с ископаемыми углеводородами, однако в 2010 году было объявлено о возобновлении исследований в связи с нестабильностью цен на нефть и ростом требований к энергетической безопасности, экологической чистоте и снижению эмиссии парниковых газов.

В последние несколько лет биотопливо из водорослей получают и используют в экспериментальном режиме.

Параллельно исследования в этом направлении проходили в СССР, в том числе в НИЛВИЭ. В частности, в 1989–2002 годах лаборатория проводила исследования биопродуктивности и возможностей использования микроводорослей в качестве источника энергии, для получения биогаза и жидкого биотоплива, на базе экспериментального полигона Морского гидрофизического института АН УССР на южном берегу Крыму у посёлка Кацивели. Сотрудниками лаборатории была разработана и сконструирована система «Биосоляр», предназначенная для выращивания микроводорослей - фотосинтезирующие блоки или биогенераторы, с размещением в море и на суше, общей площадью несколько сотен квадратных метров.

В качестве объекта эксперимента была выбрана микроводоросль спирулина платенсис (Spirulina platensis), также называемая артоспира (Arthospira platensis). Одной из особенностей эксперимента была постепенная адаптация вида (в естественных условиях спирулина живёт в пресноводных субтропических и тропических водоёмах) к морской воде Чёрного моря. Опыты показали достаточно высокую продуктивность - годовой выход биомассы с каждого блока водорослевой плантации площадью 70 м2 достигал одной тонны. Экстраполируя - это более 140 тонн с 1 га, хотя достижение такого результата на больших площадях в российских условиях - отдельная задача.

Кроме того, исходное сырьё для получения биотоплива - липиды (жиры), содержание которых в разных видах различно. Спирулина обладает высокой долей белка - около 60 % сухой массы, что в числе прочего делает её ценным пищевым продуктом. В то же время содержание липидов - всего 7 %. Для сравнения, в семенах рапса и подсолнечника на липиды приходится 30–60 % массы, в семенах сои и кукурузы - 15–25 % и выше, в плодах масличной пальмы - 45–70 %. Именно эти культуры в настоящее время используются в качестве основного сырья для производства биотоплива. Поэтому идёт работа с микроводорослями, имеющими более высокое содержание липидов, пока носящая и в нашей стране (включая НИЛВИЭ), и в мире главным образом экспериментальный характер.

Водоросли как источник энергии – преимущества и недостатки

Итак, микроводоросли очень высокопродуктивны. Урожай с одного гектара теоретически может ежемесячно достигать тонн и даже десятков тонн в сухом весе, что в разы и даже на порядки выше, чем у традиционных сельскохозяйственных культур. При этом содержание липидов у ряда видов, таких как ботриококкус брауни (Botryococcus braunii), дуналиелла (Dunaliella), наннохлорис (Nannochloris), стихококкус (Stichococcus) в оптимальных условиях может достигать 80 %. Таким образом, теоретически возможный выход биотоплива в десятки и даже сотни раз выше, чем у используемых в настоящее время масличных культур (табл. 3).

При этом можно избежать конфликта с продовольственно-ориентированным использованием сельскохозяйственных земель. Плантации микроводорослей могут располагаться в естественных и искусственных водоёмах, на неудобных и неиспользуемых землях и морских акваториях, при этом занимая существенно меньшие площади.

Наконец, выращивание традиционных сельскохозяйственных культур на суше сопряжено с большим объёмом выбросов парниковых газов и других загрязняющих веществ. На фоне этого культивирование водорослей выглядит экологически абсолютно безопасным, более того, увеличивающим поглощение углекислого газа и выделение кислорода в атмосферу, что создаёт двойной положительный эффект - получение пищи и топлива, сопровождающееся не загрязнением, а с очищением среды. Проблема, как обычно, состоит в том, что реальные условия, как правило, далеки от оптимальных и теоретически возможных.

В рамках упоминавшейся выше программы ASP в США микроводоросли с большим содержанием липидов культивировались в открытых прудах в штате НьюМексико (юго-запад страны). Средняя продуктивность составляла 20 г/м2 в сутки (что соответствует 73 тонн с одного гектара в год), а в отдельные периоды - до 70 г/м2 в сутки.

Тем не менее, выяснилось, что невозможно в течение длительного времени поддерживать монокультуру микроводорослей в открытой системе, где неизбежно присутствуют и другие организмы. Кроме того, высокая продуктивность водорослей возможна при достаточно большой подкормке азотом, в отсутствие его она падает. В данном случае видно сходство с традиционными сельхозкультурами, также требующими азотных удобрений. В то же время при отсутствии азота содержание жиров в клетках водорослей выше. Итак, задача одновременного роста биопродуктивности и содержания липидов, обусловливающих энергоэффективность культуры, оказывается неразрешимой, и требуется поиск оптимального соотношения того и другого.

Японские исследователи из Научноисследовательского института инновационных технологий Земли (Research Institute of Innovative Technology for the Earth (RITE)), работавшие над этой же задачей в 1991–1999 годы, пришли к сходным результатам.

В 1997–2001 годах крупный исследовательский проект в этом же направлении осуществлялся на Гавайских островах, с микроводорослью хематококкус плювиалис (Haematococcus pluvialis), которую на первой стадии выращивали в закрытых фотобиореакторах, на второй - помещали в условия открытых водоёмов. Средняя продуктивность биомассы культивируемой водоросли составила 38 тонн с 1 га, максимальная превышала 90 тонн, выход биотоплива, соответственно, был 11,4–27,5 тонн с 1 га, что в несколько раз выше, чем у самых продуктивных масличных культур на суше.

В то же время, при выращивании в открытых условиях и биопродуктивность, и содержание липидов оказываются существенно ниже, а выращивание в закрытом биореакторе ведёт к существенно более высоким затратам.

В переводе на энергетический эквивалент получается, что для получения 1 л биодизеля из микроводорослей требуются энергозатраты, эквивалентные 0,56– 0,81 л топлива (в среднем около 0,7 л), включающие электроэнергию, питательные вещества и другое. В данном случае, помимо экономической составляющей, присутствует и экологическая - поскольку энергия, идущая на выращивание водорослей, добывается уже из невозобновляемых источников и экологически безопасной не является, то есть экологический эффект производства биодизеля в значительной степени обесценивается. Кроме того, существует отрицательный экологический эффект, связанный с азотной подкормкой и водопотреблением плантаций водорослей, то есть такой же, как и в традиционном сельскохозяйственном производстве. Кроме того, речь идёт о затратах без учёта инвестиций, оплаты труда, других издержек, связанных, в частности, с транспортировкой топлива.

Расчёты затрат на получение биодизеля из микроводорослей дают существенно различающиеся результаты, в очень высокой степени зависящие от вида и способа производства водоросли, природных условий и других факторов. В частности, по расчётам участников программы ASP, стоимость 1 л «водорослевого» биодизеля составила 26–86 центов ($ 39–127 за баррель), в гавайском проекте - около 40 центов ($ 56 за баррель), а исследователи из Британской Колумбии (Канада) дают существенно более высокие цифры - от $ 2,5 до $ 7 за 1 л.

По нашим расчётам, инвестиционные затраты на обустройство 1 га водорослевых плантаций в открытых условиях, включая монтаж культиваторов, оборудование для приготовления питания, перемешивания, сушки и фильтрации биомассы и другое, составят около $ 50 тыс.

Операционные затраты в крайне высокой степени зависят от местных условий, начиная от климата и заканчивая уровнем оплаты труда. Их можно оценить в $ 50–100 тыс. в год, но в условиях России они могут быть в несколько раз выше, в частности, из-за существенно большего по сравнению с субтропиками и тропиками расхода электроэнергии и короткого вегетационного периода при выращивании в открытых условиях.

Это вполне приемлемые условия при выращивании водорослей в качестве пищевых и лекарственных добавок, но как источник топлива они оказываются слишком дорогими.

При данных затратах, даже в случае сбора с 1 га 30 тонн биомассы ежегодно, каждая тонна будет обходиться в $ 1600– 3200 ($ 1,6–3,2 за 1 кг), даже без учёта первоначальных инвестиций и затрат на получение собственно биотоплива. Это близко к цифрам, приводимым канадскими исследователями.

Перспективы водорослевой энергетики

Интерес к водорослям в качестве источника биотоплива закономерен при ценах нефти в $ 100 за баррель и выше, как было во второй половине 2000-х годов. В настоящее время ситуация далеко не столь благоприятна, и вряд ли можно предсказать, изменится ли она в лучшую для возобновляемой энергетики сторону в обозримом будущем.

В настоящее время идёт и будет продолжаться поиск путей снижения затрат на производство биоэнергии из водорослей. Помимо прочего, он включает поиск, отбор и выведение культур водорослей с повышенным содержанием липидов, более продуктивных и жизнестойких.

В качестве же пищевого продукта (что тоже можно считать источником энергии) водоросли уже используются и имеют очевидные перспективы. Вероятно, как и в случае с торфом, в дальнейшем целесообразно комплексное использование выращиваемых водорослей с созданием целого спектра пищевых, лекарственных, энергетических продуктов на выходе. Для России это также могло бы стать одним из направлений среднеи долгосрочного инновационного роста и создания высокотехнологичной экономики на отечественной интеллектуальной и производственной базе. опубликовано

БИОТОПЛИВО ИЗ ВОДОРОСЛЕЙ - топливо второго и третьего поколений

Редактор Biofuels Digest Джим Лэйн называет биотопливо второго и третьего поколений из водорослей и других одноклеточных организмов «самым волнующим экспериментом, который сейчас идет в биоэнергетике ».

Одноклеточный организм, производящий фотосинтез, образует крохотный жировой пузырек, который позволяет ему плавать на поверхности воды. Доисторические предки этого организма были источником образования углеводородов, и по своей природе он ближе к нефти, чем зерновые, пальмы или растения рода ятрофа, из масла которых пытаются делать биодизельное топливо . Департамент развития топлива Министерства энергетики США с 1978 по 1996 год уже финансировал программу Aquatic Species по получению БИОТОПЛИВА ИЗ ВОДОРОСЛЕЙ , но реальные результаты стали появляться только в последние годы, когда такие ученые, как Стивен Мэйфилд из Калифорнийского университета Сан-Диего, применяя наработанные в фармацевтической индустрии методы, научились разводить водоросли , которые отличаются следующими характеристиками: быстро растут, содержат много масла, устойчивы к заболеваниям. К тому же урожай водорослей легко собирать.

За день в лабораториях Sapphire создают и исследуют до 8000 штаммов таких одноклеточных водорослей . Самые перспективные проходят долгий путь: от подносов с 96 крохотными чашками Петри – в контейнеры размером с бутылку, где водоросли бережно взбалтывают, чтобы равномерно распределить их в объеме воды, затем в мягкие пластиковые пакеты, подвешенные на манер капельниц для внутривенного вливания, потом в бассейны, содержимое которых перемешивает большое колесо с лопастями. Наконец водоросли помещают в теплицы для промышленного выращивания.

В мае 2008 года в лаборатории Sapphire впервые в истории получили из возобновляемых ресурсов бензин с октановым числом 91.

В сентябре 2010 года компания, получив грант Министерства энергетики ($50 млн.) и кредит под гарантии Министерства сельского хозяйства ($54,5 млн.) начала строительство на 300 акрах опытного завода в Нью-Мексико. Уже в этом году завод должен производить несколько сотен баррелей нефти в день. Если все будет хорошо, Sapphire продолжит коммерческое развитие проекта, чтобы к 2018 году производить уже десятки тысяч баррелей в день. Это минимальная «корзина» топлива, которую может рассматривать ответственный за закупки менеджер на нефтеперерабатывающем заводе. «Крупные НПЗ принимают 20-30 подобных “корзин” сырья в любое время, – говорит Уорнер. – Обычно нефтепереработчики не интересуются меньшим объемом. Вот на этот уровень нам и нужно выйти».

Срок жизни водорослей долог, а число их ошеломляюще велико. Марк Бюгнер, ведущий аналитик по биотопливу в американском исследовательском агентстве Lux Research, говорит, что сегодняшние технологии все еще слишком дороги и не позволяют добывать много сырья. «По сравнению с водорослями получение этанола из кукурузы покажется скромным проектом». При этом производство и получение биотоплива из кукурузы, на которое в США возлагали большие надежды, на поверку оказалось очень дорогим.

Марк Бюгнер говорит, что Sapphire очень закрытая компания. На офисе нет даже вывески, а стоит неизвестному человеку вылезти из машины, как его встречает крепкий охранник. «Это внушает подозрения, что технология не работает, – говорит Бюгнер. – Что секретность – это ширма, позволяющая скрыть тот факт, что компания находится в том же положении, как и все остальные». И добавляет: «Вы можете сказать, что такие люди, как Си-Джей, не станут рисковать карьерой из-за проекта, который не работает. Но и умные люди могут совершать ошибки. Нет стопроцентной гарантии, что здесь все в порядке».

Байрон Уошом, эксперт в области альтернативной энергетики с 20-летним стажем, директор стратегических энергетических инициатив в Калифорнийском университете в Сан-Диего, настроен более оптимистично: «Я всегда спрашиваю клиентов: “На кого вы ставите на скачках – на лошадь или на жокея?” Сам я ставлю на жокея: он знает, как подобрать лошадь и выиграть заезд. Я бы сказал, что у компаний вроде Sapphire подходящие данные, чтобы выиграть скачку».

Примеры использования биотоплива в технике

США: Демонстрация первого рейса эсминца на биотопливе прошла успешно

В США провели рейс эсминца, который использовал в качестве горючего биотопливо .

Эскадренный миноносец, относящийся к классу Spruance и управляемый дистанционно, совершил плавание протяженностью 17 часов вдоль побережья США от калифорнийского города Сан-Диего до базы ВМС США в Порт-Уайними. Двигатели корабля весь маршрут работали на смеси, которая содержала в равной пропорции обычное горючее и обработанное специальным образом масло. Масло это было получено из водорослей.

Эта демонстрация – один из этапов перевода ВМС США на доктрину «Великого зеленого флота». Согласно положениям этой доктрины, ВМС США к 2016 г. планирует использовать исключительно альтернативное топливо , а к началу следующего десятилетия удовлетворять 50% общего энергопотребления флота за счет альтернативных источников энергии .

Народ приходит на авиасалон ILA в Берлине, прежде всего, чтобы увидеть самолеты. Но самолеты без топлива не летают, а оно не вечно и по тому концерн EADS, создатель самолетов-гигантов уделяет серьезное внимание разработке топлива будущего.

Как рассказывает Райнер Вайгнер «в этой невзрачной установке под названием Фотобиореактор, ученые из института промышленного использования зерна, по заказу EADS, выращивают водоросли из которых можно делать топливо, для роста водорослей необходимы только свет и двуокись углерода». Концерн связывает с этим способом производства топлива большие надежды, иначе он не стал бы показывать этот биореактор на своем стенде в Берлине.

Создание топлива из растительного сырья идея не новая, для этого уже используется рапс, картофель и зерновые культуры - рис, кукуруза, пшеница. «Проблемы при этом возникают, прежде всего, морально-этические» - говорит Отто Пульт, научный сотрудник института, - «ведь для производства топлива используются продукты питания, которых во многих частях мира нахватает». Ученые, работающие над этим проектом по заказу EADS, предлагают свою технологию выращивания водорослей и производства керосина из них.

Никакого керосина только водоросли – именно по такому принципу работает эта новинка в сфере авиапромышленности. Самолет нового поколения Diamond Aircraft DA42 кружит в берлинском небе на топливе из морских водорослей . Демонстрационный полет проходит в рамках международного авиасалона. Представил экологически чистое чудо - Европейский Аэрокосмический Оборонный Концерн.

- « Топливо из морских водорослей более энергоемкое - на 5-10%, кроме того его преимущества также в качестве выхлопов, оно выше чем при работе на обычном керосине». По словам производителей, у биотоплива есть еще одно немаловажное преимущество: - «Производить биологическое топливо можно везде, нужен лишь солнечный свет, углекислый газ, питательные вещества и место, чтобы это осуществить». Однако есть в биотопливе из водорослей и одно существенное но, производить его крайне не дешево.

- «Я не могу сказать, сколько в конечном итоге будет стоить 1 литр топлива из морских водорослей, но это будет намного дороже. К сожалению, мы еще не достигли уровня, когда можем производить его в больших количествах на продажу».

Отвечая на вопрос «Как долго ждать мировому сообществу самолетов на биотопливе?» Штулбергер ответил, что еще 5-10 лет.

Водоросли хороши тем, что очень быстро растут и дают большое количество вещества необходимого для создания топлива. К тому же водоросли могут расти где угодно, и главное - вы не расходуете на создание топлива продукты питания.

На площадке института под Берлином уже созданы большие практически промышленные установки для выращивания водорослей . Однако процесс этот пока еще слишком дорог. 1 килограмм биомассы, полученный из водорослей, стоит на мировом рынке от 10 до 20 долларов. Рентабельным такое производство может быть, если килограмм будет стоить не больше 1 доллара. Конечно, если поставить это на производственный поток, нужны миллионы тон биомассы, и себестоимость можно снизить. Поэтому ученые настроены оптимистично.

Испытательные полеты авиалайнеров заправленных таким топливом уже прошли, можно надеяться, что создание авиатоплива из водорослей - станет доходной отраслью экономики.

Искусственная нефть за минуту - вполне реально

Специалисты Мичиганского университета (США) усовершенствовали технологию производства биотоплива из морских водорослей, передают новости альтернативной энергетики информационное сообщение американского новостного издания. Ученым удалось превратить 65% водорослевой массы в топливо аналогичное нефти, так называемый «biocrude», всего за одну минуту. Многие эксперты считают это значительным прорывом в данной технологии производства биотоплива - новый процесс не требует периода в миллион лет для превращения натурального сырья в нефть.

Ранее biocrude как правило получали процессом быстрого пиролиза из древесного материала, вместе с тем также проводились и эксперименты по производству биотоплива из морских водорослей. Природный материал на время от 10 до 90 минут нагревали до 300 градусов Цельсия, в результате чего и происходило превращение. До настоящего времени наилучший из достигнутых результатов – 50% объема водорослей превращенных в biocrude - был получен при нагреве биомассы от 10 до 40 минут.

Американские ученые в ходе эксперимента наполнили разъемную стальную трубу диаметром 1,5 миллиметра массой мокрых водорослей и поместили ее в песок, разогретый до 600 градусов Цельсия, в результате чего всего за одну минуту 65% объема водорослей превратился в biocrude.
Пока остается неясным, почему более короткий по времени нагрев оказался столь эффективным.

По версии ученых реакции, производящие искусственную нефть протекают очень быстро, а медленный нагрев просто замедляет процесс преобразования побочными реакциями. Следуя этой теории, изменение затрачиваемого времени на протекание реакции позволит в дальнейшем значительно повысить скорость производства из водорослей нефтеподобного продукта, но и уменьшит размеры реакторов, что в свою очередь снизит стоимости сооружения заводов по производству biocrude, передают новости альтернативной энергетики.

Новости альтернативной энергетики также напоминают, что биотопливо biocrude может успешно использоваться на современных нефтеперерабатывающих заводах, при условии предварительного извлечения дополнительных атомов азота и кислорода, изобилующих в живых организмах.

Китай разработал авиационное биотопливо

Китай присоединился к США, Финляндии и Франции – странам, которые самостоятельно разработали авиационное топливо на основе биологического сырья, сообщают новости альтернативной энергетики. Экспериментальным видом горючего был заправлен пассажирский авиалайнер A-320 компании China Eastern Airlines, который в рамках испытаний совершил тестовый полет и благополучно приземлился в Шанхае после 85 минут пребывания в воздухе.

По словам представителей «Синопек», компании-разработчика биотоплива, продукт изготовлен на основе растительных масел и по характеристикам полностью идентичен авиационному керосину. В ближайшее время производитель намерен запустить выпуск горючего для коммерческого использования, передают новости альтернативной энергетики.

из открытых источников информации

Водоросли являются одним из самых быстрорастущих растений на Земле. Их вес удваивается за сутки, а для роста требуется ресурсы, которых на Земле очень много: солнечный свет, вода и диоксид углерода. По своим энергетическим свойствам водоросли превосходят многие другие источники для производства биотоплива. Произрастание водорослей является управляемым и неприхотливым для человека процессом. Более того, водоросли за счет биосинтеза поглощают углекислый газ из атмосферы.

Основная проблема, которая в настоящее время затрудняет развитие промышленного производства водорослей, заключается в том, что водоросли очень чувствительны к перепадам температуры воды, которая вследствие этого должна поддерживаться в строго определенном диапазоне (резкие суточные колебания не допустимы). Так же промышленное производство водорослей затрудняется отсутствием эффективных способов сбора водорослей. Описанные выше трудности привели ученых к выводу о целесообразности выращивания водорослей только в закрытых и технологически удобных водоемах. Департамент Энергетики США исследовал водоросли с высоким содержанием масла. Исследователи пришли к выводу, что Калифорния, Гаваи и Нью-Мексико пригодны для промышленного производства водорослей в открытых прудах. В течение 6 лет водоросли выращивались в прудах площадью 1000 кв. метров. Урожайность составила более 50 грамм водорослей с 1 квадратного метра в день. Кроме выращивания водорослей в открытых прудах существуют технологии выращивания водорослей в малых биореакторах, расположенных вблизи электростанций. Сбросное тепло ТЭЦ способно покрыть до 77 % потребностей в тепле, необходимом для выращивания водорослей. Эта технология не требует жаркого пустынного климата.

В настоящее время налажено серийное производство микроводорослей, пригодных к немедленной эксплуатации, в специальных биореакторах, в которых водоросли размножаются путем деления.

Корпорация «Chevron», один из мировых энергетических гигантов, начала исследование возможности использования водорослей в качестве источника энергии для транспорта, в частности, для реактивных самолетов. Компания «Honeywell, UOP» недавно начала проект по производству военного реактивного топлива из водорослевых и растительных масел. Компания «Green Star Products» завершила вторую фазу испытаний демонстрационного завода по производству биодизеля из водорослей. Во время второй фазы выбирались оптимальные условия для выращивания водорослей. Крупная энергетическая компания Японии «Tokyo Gas Co» намерена построить демонстрационный завод, на котором из морских водорослей будут получать электричество. Для работы газовых генераторов на станции будет использоваться метан, выделяемый из мелко изрубленных водорослей. Для ряда японских префектур загрязнение побережья водорослями остается серьезной экологической проблемой. Они нередко выделяют при гниении зловонный запах и портят пейзаж. Между тем новейшая разработка японских специалистов предлагает решить эту проблему с экономической выгодой. Экспериментальная модель завода с газовым электрогенератором, которая уже работает в лаборатории несколько лет, позволяет в день перерабатывать до 1 тонны водорослей. При этом вырабатывается около 9,8 киловатт электроэнергии. Эта пилотная установка позволяет получать около 20–30 куб метров метана в месяц - этого объема достаточно, чтобы ровно на половину сократить месячный расход на электричество средней семьи.

Авиационная промышленность также заявила о начале разработок по использованию морских водорослей, в качестве сырья для производства авиационного топлива. Компания Боинг сообщила, что альтернативой биодизелю, произведенному из морских водорослей, в будущем может стать производство авиационного биотоплива. Согласно документу, никакое биотопливо, которое сегодня производится, не может быть использовано в качестве авиационного топлива. Этанол поглощает воду и разъедает двигатель и топливный провод, в то время как биодизель замерзает при низких температурах (на крейсерской высоте). Кроме того, биотопливо обладает более низкой термической стабильностью, чем обычное реактивное топливо. Специалисты Боинга считают, что оптимальным сырьем для производства биотоплива станут морские водоросли, из которых получают почти в 300 раз больше масла, чем из сои. По мнению компании Боинг, биотопливо из водорослей - это будущее для авиации. Так, если бы весь флот авиалиний мира по состоянию на 2004 год использовал 100% биотопливо, полученное из морских водорослей, понадобилась бы 322 млрд. литров масла. Для выращивания этих водорослей необходима земля площадью 3,4 млн. га. В расчете принято, что с одного гектара получается 6 500 литров ежегодно. Для этих целей, возможно, использовать земли, которые не пригодны для выращивания пищевых сельхозкультур.

Все большую популярность среди потребителей и производителей набирает биотопливо. Причем, если производить его затратно, как и любой другой вид бизнеса, то реализовывать потребителям не сложно. Основной мотив, которым оперируют продавцы – бережное отношение к природе, отсутствие вредного воздействия, и кроме того – высокая эффективность и низкая стоимость по сравнению с традиционным топливом. Основные виды биотоплива: биодизель, биогаз, и самое популярное – биоэтанол.

Международный контроль

Интересен тот факт, что Еврокомиссия намерена стимулировать страны-участницы к переводу на биотопливо автомобилей в объеме 10% от общего количества. Для достижения этой цели в странах Европы созданы и работают специальные советы и комиссии, которые стимулируют автовладельцев к переоснащению двигателей, а также контролируют качество поставляемого на рынки биотоплива.

Для сохранения биобаланса на планете Земля комиссии следят, чтобы количество растений, являющихся сырьем для производства продуктов, увеличивалось, и их не вытесняли растения, из которых производят биотопливо. Кроме того, предприятия, которые производят биологическое топливо, должны постоянно совершенствовать свои технологии и ориентироваться на выпуск топлива второго поколения.

Топливные реалии в России и в мире

Результаты такой активной работы не заставили себя ждать. К примеру, еще в начале второго десятилетия века в Швеции уже работали 300 автозаправок, на которых можно залить в бак экологически безопасный биодизель. Изготавливается он из масла знаменитых сосен, произрастающих в Швеции.

А весной 2013 года произошло событие, ставшее переломным моментом в развитии технологий производства авиационного топлива. Из Амстердама вылетел трансатлантический самолет, заправленный биотопливом. Этот Боинг благополучно приземлился в Нью-Йорке, положив тем самым начало использованию экологически чистого и недорогого топлива.

Россия в данном процессе занимает весьма интересную позицию. Мы являемся производителями различных видов биотоплива, занимаем третье место в рейтинге экспортеров топливных пеллет! Но внутри своей страны мы потребляем менее 20% топлива, продолжая использовать дорогостоящие виды.

27 регионов России стали опытными площадками, где были построены и запущены электростанции, работающие на биогазе. Этот проект стоил почти 76 миллиардов рублей, но экономия от работы станций превосходит эти затраты во много раз.

Второе поколение биотоплива

Сложность производства состоит в том, что для него требуется довольно много растительного сырья. И для выращивания его нужны земли, которые при правильном раскладе должны быть использованы для выращивания пищевых растений. Поэтому новые технологии направлены на то, чтобы биотопливо производить не из растения целиком, а из отходов другого производства. Щепки от деревообработки, солома после обмолота зерновых, шелуха от подсолнечника, жмых от масличных и фруктов, и даже навоз и многое другое – вот что становится сырьем для биотоплива второго поколения.

Ярким примером биотоплива второго поколения является «канализационный» газ, то есть биогаз, состоящий из углекислого газа и метана. Чтобы биогаз можно было использовать в автомобилях, из него удаляют углекислый газ, в итоге остается чистый биометан. Примерно таким же способом из биологической массы получают биоэтанол и биодизель.

Подсолнечник, соя или рапс – основные виды растений, из которых производится биодизельное топливо. В автомобилях его не используют в чистом виде. Его смешивают с традиционным дизельным топливом, причем биодизель должен содержаться в пропорции 1:4, то есть одна пятая часть биодизеля и четыре пятых – обычного дизеля. Именно поэтому использование биодизельного топлива очень просто в техническом плане. Двигатель автомобиля не требует изменений и доработки. Выхлопные газы при использовании биодизеля намного более чистые в экологическом плане, содержание вредных веществ намного ниже, чем допустимые экологические параметры. Энергоотдача биодизеля несколько ниже, чем у чистого дизеля, поэтому снижается мощность автомобильного двигателя. Следовательно, топлива требуется несколько больше.

Производство биодизеля допускает использование любых видов масел из растений – подсолнечника, рапса, льна и других. Разные масла придают биодизелю свои особенности. Пальмовый биодизель отличается высокой калорийностью, он застывает и фильтруется при высоких температурах. Биодизель из рапса отлично реагирует на холод, поэтому его следует использовать только в северных районах.

Как изготавливают биодизель

Чтобы произвести биодизель, требуется уменьшить вязкость растительного масла. Для этого из него удаляют глицерин, и вместо него вводят в масло спирт. Этот процесс требует нескольких фильтраций, чтобы удалить воду и различные примеси. Чтобы ускорить процесс, в масло добавляется катализатор. Также в смесь вводят спирт. Для получения метилового эфира в масло добавляют метанол, для получения этилового эфира – этанол. В качестве катализатора используют кислоту.
Все компоненты перемешиваются, затем необходимо время на отслоение. Верхний слой емкости – это и есть биодизель. Средний слой – мыло. Нижний слой – глицерин. Все слои идут в дальнейшее производство. И глицерин, и мыло – это необходимые в народном хозяйстве составы. Биодизель проходит несколько очисток, осушается, фильтруется.
Довольно интересны цифры данного производства: тонна масла при взаимодействии со 110 кг спирта и 12 килограммов катализатора дают в итоге 1100 литров биодизеля и более 150 кг глицерина. Биодизель имеет янтарно-желтый цвет, как красивое свежеотжатое подсолнечное масло, глицерин темный, причем уже при 38 градусах он твердеет. В биодизеле хорошего качества не должно быть никаких примесей, частиц, взвесей. Для постоянного контроля качества при использовании биодизеля необходимо проверять автомобильные топливные фильтры.

Биоэтанол

Этот вид биотоплива производится из растительного сырья – из сахарного тростника или кукурузы. Основные производители данного вида биотоплива – США и Бразилия. Биоэтанол вводят в состав обычного бензина. Причем, в названии бензина включено количество процентов биотоплива в составе смеси. Например, Е-10 содержит 90% бензина и 10% биологического этанола. Именно этот вид бензина подходит к любому двигателю автомобилей. А вот смесь Е-85, в которой 85% биотоплива, требует технической доработки двигателя авто.

Изготовление биоэтанола

Брожение сырья, богатого сахарами – вот основа получения биоэтанола. Этот процесс похож на получение спирта или на обычное самогоноварение. Крахмал зерна превращается в сахар, к нему добавляются дрожжи, получается брага. Чистый этанол получают путем отделения продуктов брожения, это происходит в специальных колоннах. После нескольких фильтраций производят осушку, то есть удаляют воду.

Биоэтанол без примесей воды можно добавлять в обычный бензин. Экологическая чистота биоэтанола и его минимальное воздействие на окружающую среду высоко ценится в промышленности, кроме того, цена получаемого биотоплива весьма приемлема.

Биотопливо третьего поколения

Третье поколение биотоплива – это топливо из водорослей. Ценность такой технологии огромна. На планете огромное количество земли, которая не пригодна для выращивания пищевых растений. Именно на ней отлично приживаются водоросли. Необходимо только создать небольшие искусственные пруды или специальные биореакторы закрытого типа. Основывается данная технология на том, что в водорослях в процессе роста накапливаются масла. И ученые обнаружили, что молекулы этих масел имеют схожую структуру с обычной нефтью.

Все, что нужно для роста водорослей, это вода, свет, углекислый газ, питательная среда. Причем процесс роста водорослей имеет еще один положительный эффект для человечества: они во время роста потребляют углекислых газ, избавляя планету от парникового эффекта, и насыщают атмосферу кислородом. При переработке водорослей получается топлива в 3,5 раза больше, чем из пальмового масла, в 5 раз больше, чем из сахарного тростника, в 8 раз больше, чем из кукурузы, и в 40 раз больше, чем из сои.

Е.Щугорева

Перспективным сырьем для биотоплива являются морские микроводоросли, которые не требуют ни чистой воды, ни земли.

Исследователи определили состав биотоплива, полученного из микроводорослей Spirulina platensis , с помощью масс-спектрометрии высокого разрешения. Ученые изучили две фракции биотоплива, которые получаются после того, как массу из водорослей обработают специальным методом. Кроме того, они показали, что биотопливо по составу имеет мало общего с нефтью, зато у него есть что-то общее с зеленкой – той самой, что можно купить в любой аптеке. Работа была сделана группой ученых из Сколтеха, Института энергетических проблем химической физики имени В. Л. Тальрозе РАН, Института биохимической физики имени Н. М. Эмануэля РАН, Объединенного института высоких температур РАН, МГУ и Московского физико-технического института. Исследование опубликовано в журнале European Journal of Mass Spectrometry. Кратко о нем рассказывает пресс-релиз Московского физико-технического института.

Водоросли как спасение экологии

Биотопливо, как альтернативный источник энергии, представляет особенный интерес для изучения, ведь оно помогло бы решить такие проблемы, как истощение запасов нефти и глобальное потепление. В отличие от нефти, биотопливо производится из возобновляемых природных ресурсов, а при его сжигании выделяется меньше парниковых газов. Бразилия, например, уже обеспечивает с помощью биотоплива 40% своих потребностей.

В качестве сырья для биотоплива используют сельскохозяйственные культуры и другие растения. Однако в этом случае приходится занимать плодородную землю, которая могла бы вместо этого кормить людей. Перспективным сырьем для биотоплива являются морские микроводоросли, которые не требуют ни чистой воды, ни земли. Водоросли активно поглощают углекислый газ, а значит их использование действительно полезно для уменьшения парникового эффекта. Топливо из микроводорослей называют биотопливом третьего поколения, и в настоящее время ведутся активные разработки по его производству.

Рецепт биотоплива

Если мы узнаем состав биотоплива, мы сможем усовершенствовать процесс его производства. Первоначальные техники получения горючего из водорослевой массы были энергетически невыгодными, так как много энергии затрачивалось на высушивание водорослей, в которых содержится много воды.

Для коммерческого применения нужен был новый, более эффективный метод. И такой метод придумали – это так называемое гидротермальное сжижение: мокрую биомассу нагревают до температуры больше 300℃, сжимают давлением в 200 атмосфер и на выходе получают топливо. Примерно тот же принцип действует в природе, когда под воздействием больших температур и высокого давления в недрах Земли образуется нефть, только в реакторе это происходит быстрее. В результате получается две фракции: жидкое биотопливо и густая масса, которая остается в реакторе. Это смеси, состоящие из тысяч индивидуальных компонентов и для определения их состава наилучшим образом подойдет масс-спектрометрия.

Масс-спектрометрия

Масс-спектрометрия – метод исследования, с помощью которого можно определить состав вещества. Метод основан на том, что в электрическом и/или магнитном поле разные соединения ведут себя по-разному – в зависимости от их соотношения массы и заряда m/z. На выходе получается масс-спектр – график с пиками интенсивности, где каждому пику соответствует свое значение m/z.

Масс-спектры жидкой фракции (вверху) и твердой фракции (внизу)

Ученые исследовали с помощью масс-спектрометрии биотопливо, полученное из водорослей Spirulina platensis . В процессе гидротермального сжижения все вещества с температурой кипения меньше 300 градусов выходят из реактора в виде газа и охлаждаются в специальной емкости. Таким образом, получается жидкая фракция, а в реакторе остается твердая фракция. Масс-спектрометрический анализ показал, что обе фракции содержат больше всего веществ, у которых в составе есть N и N 2 , но компоненты твердой фракции более разнообразны и по свойствам отличаются от компонентов жидкой фракции. Найденные в биотопливе вещества не имели ничего общего с веществами, которые содержатся в обычной сырой нефти, хотя и являются горючими. Масс-спектрометрия позволяет узнать только молекулярные формулы веществ (например, C 18 H 35 N 2). Чтобы получить какую-нибудь информацию о структуре молекул, исследователи применили метод замены водорода на дейтерий.

Замена водорода на дейтерий

Перед тем, как запустить молекулы в масс-анализатор, их нужно зарядить, иначе электромагнитное поле на них не подействует. У обычных молекул заряд z=0, в них число протонов равно числу электронов. А если, например, к молекуле присоединить протон (частица с зарядом +1), то она станет ионом с зарядом z=1. Процесс превращения молекул в ионы называется ионизацией. Когда водород заменяется на дейтерий, масса иона* становится больше и пик в спектре смещается. По тому, сместился пик или нет, ученые определяют, в каком месте в молекуле стоял водород. Однако не любой водород отдаст свое место дейтерию, точнее не любое место водород сможет освободить.

В ядре дейтерия, или тяжелого водорода, кроме протона есть нейтрон, который влияет на массу, но не на заряд

Перед запуском в масс-анализатор молекулы образца подвергают ионизации. В данном случае к нейтральным соединениям добавлялись протоны, и они превращались в положительные ионы. Присоединенный протон легко заменяется на дейтон, но оказалось, что в некоторых компонентах биотоплива замены не происходит. Ученые это поняли по интенсивности смещенного пика, который получается при замене. У обычной нефти смещенный пик имел такую же интенсивность, как несмещенный, а значит, замена произошла полностью.

В случае с биотопливом, интенсивность смещенного пика была в пять раз меньше. Это значит, что под одним пиком кроется несколько соединений и не во всех из них есть присоединенный водород, вместо которого мог бы встать дейтерий. Если вещества не поддаются ионизации, значит они уже являются положительными ионами и в таком виде содержатся в биотопливе. Эти вещества похожи на некоторые красители, такие, как например бриллиантовый зеленый, который входит в состав зеленки.

Евгений Николаев, член-корреспондент РАН, профессор Сколтеха, научный руководитель Лаборатории ионной и молекулярной физики МФТИ комментирует: «Исследование продуктов гидротермального сжижения микроводорослей с помощью масс-спектрометрии имеет важное значение для повышения эффективности производства биотоплива. Дальнейшая работа должна быть сконцентрирована на использовании сортов водорослей с максимально высоким содержанием липидов и создание таких сортов с использованием генетической модификации. Так мы сможем выбрать из них самое эффективное сырье для биотоплива». опубликовано