Переработка фотополимерных форм. Фотополимерная печатная форма


1.Cоздать макет печати:

Макет печати отрисовать с нужными данными на компьютере в любой программе и инвертировать в негативное (черно-белое) изображение.
Мы предлагаем для создания макета печати программу CoralDraw и в помощь "новичкам" диск - "Печати и штампы. Защитные элементы" (3000руб.), с большим выбором макетов, шрифтов, шаблонов и изображений.

2.Распечатать макет:

Распечатать на лазерном принтере с разрешением не менее 600 dpi на матовой пленке Kimoto или прозрачной LOMOND (обратите внимание на качество негатива).

3.Обработать тонером негатив:

Негатив обработать тонером, после чего тёмный фон должен потемнеть. Используйте оригинальные картриджи и тонер.

4.Поместить негатив на стекло:

Намочив обратную сторону пленки, негатив поместить лицевой стороной вверх на стекло, предварительно смоченное водой (для лучшего прилипания).

5.Негатив накрыть защитной плёнкой (по желанию) :

Негатив накрыть сверху защитной плёнкой (по желанию). Разглаживающими движениями выгнать остатки воды из под плёнки (для предотвращения образования пузырьков воздуха и лучшего контакта).

6.Обклеить бордюрной лентой:

Обклеить по периметру бордюрной лентой, ограничивающей пространство для полимера, при этом в углах оставить разрывы.

7.Залить негатив фотополимером:

Равномерно, не обрывая струю, залить негатив фотополимером и удалить образовавшиеся пузырьки, выдувая воздухом из резиновой груши или острым предметом (скрепкой, зубочисткой, иголкой).

8.Накрыть плёнкой-субстратом:

Накрыть плёнкой-субстратом (На полимер шершавой стороной! Наружу глянцевая!), начиная с середины, как показано на рисунке. Касаемся без надавливания центра полимера пленкой и просто отпускаем края-они сами расправятся и лягут на полимер.

9.Накрыть вторым стеклом:

Накрыть вторым стеклом полученную композицию и зажать по краям зажимами (канцелярские зажимы покупаются отдельно в любой канц.магазине).

10.Поместить в экспонирующую камеру:

Поместить стеклянную кассету в экспонирующую камеру лицевой стороной вверх.

11.Запустить таймер:

На цифровом таймере установить время экспонирования, которое в большей степени зависит от свойств фотополимера. Для полимера марок VX55, ROEHM со стороны прозрачной плёнки (первое время) оно равно примерно 20 -30 сек. Запустить таймер нажатием кнопки CD. При этом таймер начнёт обратный отсчёт времени, а внутри появится голубое свечение от ламп.

12.На таймере установить время экспонирования:

После того, как таймер отсчитает время, и лампы погаснут, перевернуть кассету матовой плёнкой (негативом) вверх и снова запустить процесс экспонирования (ИЗМЕНИВ ВРЕМЯ). Для полимера марок VX55, ROEHM время экспонирования на обратной стороне (второе время) составляет 1 мин. Более точное время определяется опытным путём изменяя время обоих засветок.Смотрите брошюру « Технологический регламент». По окончании достать кассету из камеры.

13.Разделив стекла отделить негатив:

Осторожно разделив стекла, отделить от фотополимера только негатив и защитную тонкую плёнку. Субстрат (прозрачный) от печати не отделять. После снятия затвердевшего полимера со стекол, часть его остается жидким, поэтому затем его нужно промыть.
ВНИМАНИЕ!
Очень часто начинающие изготовители нарушают технологию изготовления, а именно в составе печати обязательно должна быть жёсткая основа печати - субстрат! Это пленка имеет две стороны одна из которых шершавая сторона накладывается на фотополимер, а гладкая - служит в дальнейшем для приклеивания на скотч (на оснастку, на корпус). Её не надо отделять от фотополимера после процесса изготовления!
Для примера: если приводить сравнение - представьте человека, у которого нет костного скелета, так и печать без субстрата.

14.Промыть клише:

Для очистки от не затвердевшего полимера, клише хорошо промыть с помощью щетки и моющего обезжиривающего средства типа Fairy, Золушка под тёплой (не горячей) проточной водой.

15.Клише поместить в воду:

Клише поместить в ванночку с водой в экспонирующую камеру на 7-10 минут для затвердения.

16.Срезать лишний полимер:

Вырезать клише, срезать весь лишний полимер. Срезать аккуратно не задевая бортики, иначе печать будет забракована. К этому этапу надо отнестись очень внимательно, чтобы не пришлось повторить всё с начала.

17.Клише наклеить на оснастку:

Готовое клише наклеить на оснастку.

В нашем магазине посетите раздел где можно приобрести расходные материалы.

Флексография - разновидность высокой печати, характеризующаяся применением эластичных печатных форм и маловязких быстросохнущих красок.

Эластичные печатные формы имеют значительные преимущества перед жесткими формами: возможность печатания при небольшом давлении печати на различных, в том числе невпитывающих материалах (бумага, картон, пленки, пластики, целафан, металл и пр.). При этом они отличаются высокой тиражестойкостью, свыше 1 млн. экземпляров.

На современный момент определены три основных области применения флексографских форм:

  • · формы для запечатывания гибкой упаковки;
  • · формы для запечатывания картона, гофрокартона и материалов с шероховатой поверхностью;
  • · формы для лакирования офсетных оттисков.

Тонкие формы используют для высококачественной растровой флексографской печати, более толстые с глубоким рельефом - для запечатывания гофрокартона.

Формы предназначены для печатания флексографскими красками на спиртовой или водной основе, УФ - красками и лаками. Они совместимы с масляными красками и агрессивными растворителями, например ацетатами или кетонами.

Способ изготовления фотополимерных флексографских форм основан на том же принципе, что и способ получения обычных фотополимерных форм высокой печати т. е. формирование печатающих элементов путем полимеризации материала под действием излучения, и удаления не затвердевшей массы на участках образования пробельных.

Существует два направления производства фотополимерных флексографских форм: из твердых материалов и из жидких.

Изготовление фотополимерных флексографских форм из твердых материалов. В качестве твердого материала используют пластину, произведенную в промышленных условиях, которая состоит нескольких слоев (рис 11): защитной пленки, разделительного слоя, полимерного слоя и полиэфирной пленки.

Рис. 11.

Полиэфирная основа и защитная пленка (т. е. крайние слои) предохраняют слой полимера от прямого контакта с окружающей средой.

При этом пластина остается гибкой и эластичной. Формат и толщина требуемой пластины определяется конструкцией печатной машины.

Для обычных фотополимерных форм в качестве оригинала используют негатив.

Процесс получения фотополимерных флексографских форм производится с использованием специализированного оборудования. Для экспонирования используются ртутные лампы УФ излучения с длиной волны 360 мм. Само экспонирование осуществляется в экспонирующем устройстве с вакуумной системой прижима негатива и формы друг к другу. Для удаления не затвердевших масс и сушки применяют вымывные и сушильные устройства

Процесс изготовления флексографской формы из твердых фотополимеризующихся материалов состоит из следующих этапов:

  • 1. Экспонирование оборотной стороны.
  • 2. Основное экспонирование (экспонирование изображения).
  • 3. Вымывание.
  • 4. Сушка.
  • 5. Дополнительная обработка светом.
  • 6. Дополнительное экспонирование.

Экспонирование оборотной стороны представляет собой воздействие УФ излучения на слой полимера через полиэфирную пленку - основу. Эта операция преследует несколько целей:

  • - определяется глубина рельефа для готовой печатной формы;
  • - из-за повышения светочувствительности сокращается продолжительность экспонирования изображения, в частности отдельно стоящих и мелких элементов изображения;
  • - повышается устойчивость печатающих элементов за счет прочного соединения с основанием рельефа и обеспечивается стабильная структура боковых граней;
  • - обеспечивается сцепление между полиэфирной основой и полимерным слоем;
  • - в процессе вымывания ограничивается впитывание растворителя и максимальная глубина вымывания.

Перед проведением основного экспонирования защитная пленка удаляется с поверхности формы. Негатив накладывают на пластину эмульсионной стороной. При проведении этой технологической операции на форме образуется позитивное рельефное изображение. Построение изображения начинается на поверхности формы и продвигается вниз в виде конуса, тем самым, обеспечивая идеальный, для форм высокой печати, профиль печатающих элементов с резкими границами и боковыми гранями.

При вымывании растворителем и обработке щетками удаляются незаполимеризованные участки формы. Остается рельеф с поверхностью, соответствующей прозрачным участкам негатива.

В процессе сушки испаряется растворитель, впитавшийся в форму во время вымывания. Форма приобретает нужную толщину, но поверхность остается достаточно липкой. Операцию сушки производят с использованием сушильных устройств.

После дополнительной обработки УФ лучами с длиной волны 254 мм и окончательного экспонирования УФ лучами с длиной волны 360 мм форма получает окончательную прочность и долговечность, за счет сшивания всех частей мономера. Дополнительную обработку проводят в специальных отделочных установках.

Изготовление фотополимерных флексографских форм из жидких материалов. Способ получения фотополимерных флексографских форм из жидких материалов не имеет принципиальных отличий от метода получения тех же форм из твердых пластин, кроме агрегатного состояния самого материала. Характерной особенностью этой технологии является использование специализированного для данного способа оборудования, каждый вид которого объединяет выполнение нескольких технологических операций:

  • 1. Устройство для нанесения слоя и экспонирования
  • 2. Устройство для удаления незаполимеризованного материала, вымывания, дополнительного экспонирования, дополнительной обработки, сушки.
  • 3. Резервуар для жидкого полимера.

Каждая из этих установок имеет варианты в зависимости от формата формы. Весь процесс ведется в полуавтоматическом режиме.

Изготовление фотополимерных флексографских форм с использованием лазерной и цифровой техники. Эта технология предусматривает использование пластин содержащих твердый фотополимеризующийся материал. Характерной особенностью, специально изготавливаемых для этого метода, формных пластин является наличие слоя, чувствительного к лазеру (рис 12).


Рис. 12.

Все процессы данной технологии не отличаются от технологии изготовления фотополимерных флексографских форм из твердых материалов, за исключением стадии основного экспонирования. Получение формы не предполагает использование негатива. Изображение с компьютера издательской системы передается в лазерное экспонирующее устройство. После удаления верхней защитной пленки, на слое чувствительном к лазеру выжигаются участки, соответствующие будущим печатным элементам - создается так называемая маска. Далее происходит экспонирование фотополимеризующегося слоя УФ лучами через маску. Маска имеет достаточно плотный контакт с фотополимеризующимся слоем, и использовать вакуум для дополнительного прижима не требуется. Последнее обстоятельство приводит к меньшему рассеянию УФ лучей и формированию более четких печатающих элементов, что несколько повышает качество изображения.

Современные фотополимерные формы(ФПФ). Общая схема изготовления ФПФ

Применение фотополимерных печатных форм началось в 60-е годы. Существенным фактором развития флексографской печати стало внедрение фотополимерных печатных форм. Их применение началось в 60-е годы, когда фирма «Дюпон» представила на рынок первые пластины для высокой печати «Дайкрил». Однако во флексо их можно было использовать для изготовления оригинальных клише, с которых делали матрицы, а затем резиновые формы методом прессования и вулканизации. С тех пор многое изменилось.

Сегодня на мировом рынке флексографской печати наиболее известны следующие производители фотополимерных пластин и композиций: BASF, DUPONT, Oy Pasanen & Co и др. Благодаря использованию высокоэластичных форм, данным способом возможна печать на различных материалах при создании минимального давления в зоне печатного контакта (речь идет о давлении, которое создается печатным цилиндром). К числу таковых относятся бумага, картон, гофрокартон, различные синтетические пленки (полипропилен, полиэтилен, целлофан, полиэтилентерефталат лавсан и др.), металлизированная фольга, комбинированные материалы (самоклеящиеся бумага и пленка). Флексографский способ используется преимущественно в сфере производства упаковки, а также находит применение при изготовлении издательской продукции. Например, в США и Италии около 40% от общего числа всех газет запечатываются флексографским способом на специальных флексографских газетных агрегатах. Существует два типа формного материала для изготовления флексографских форм: резиновый и полимерный. Изначально формы изготавливались на основе резинового материала, и качество их было низким, что делало, в свою очередь, низким качество оттисков флексографской печати в целом. В 70-х годах нашего столетия впервые была представлена фотополимеризующаяся (фотополимерная) пластина в качестве формного материала для флексографского способа печати. И, естественно, фотополимерные пластины заняли лидирующее положение в качестве формного флексографского материала, особенно в Европе и в нашей стране.

Изготовление ФПФ.

При изготовлении фотополимерных форм флексографской печати выполняются следующие основные операции:

  • 1) предварительное экспонирование оборотной стороны фотополимеризуемой флексографской формной пластины (аналоговой) в экспонирующей установке;
  • 2) основное экспонирование монтажа фотоформы (негатива) и фотополимеризуемой пластины в экспонирующей установке;
  • 3) обработка фотополимерной (флексографской) копии в сольвентном (вымывание) или термальном (сухая термообработка) процессоре;
  • 4) сушка фотополимерной формы (сольвентно¬вымывной) в сушильном устройстве;
  • 5) дополнительное экспонирование фотополимерной формы в экспонирующей установке;
  • 6) дополнительная обработка (финишинг) фотополимерной формы для устранения липкости ее поверхности.

Использование: в полиграфии для изготовления и обработки фотополимерных клише высокой печати, Сущность изобретения: готовую фотополимерную печатную форму облучают пучком электронов и/или у-квантов в интервале энергии 0,5-10 МэВ с плотностью потока частиц 10tT-1012 частиц/см2 с в течение 1-30 мин. 1 табл.

РЕСГ!У1 ЛИК (19) с

К (2 (2 (4 (7 ве (7 (7 ве (5

Ф м ск ра ш ф м то ст г топ вк ю б ю и е ст ю в е

УДАРСтВЕН1-!ОЕ IlAI F. I I I IOE домство сссР

СПАТЕНТ СССР)) 5018354/12

) 30.08.93. Бюл. ¹ 32

) А.П.Игнатьев, В.А.Сенюков и М.Э.Берг

) Товарищество с ограниченной ответстностью "Фирма Триам"

6234. кл. В 41 N 1/00, 1983.

Изобретение относится к технологии отовления и обработки фотополимерных атных форм на основе твердого фотопоеризующегося материала, в частности тополимерных клише высокой печати, и жет быть использовано в полиграфичей промышленности.

Цель изобретения — расширение темпеурного диапазона использования и улучние эксплуатационных характеристик тополимерной печатной формы путем изнения физико-механических свойств фоолимера, Требуемый технический результат доается тем, что в способе обработки фоолимерной печатной формы, чающем ее облучение, согласно изотению, готовую печатную форму облучапучком электронов и/или у -квантов в рвале энергии 0,5 — 10 МэВ с плотнопотока частиц 10 -10 частиц/(см,с) чение 1 — 30 мин.

Сущность предлагаемого способа сот в том, что готовую полимерную форму вергают воздействию ионизирующего (sI>c В 41 N 1/00, В 41 С 1/10, G 03 F 7/26 (54) СПОСОБ ОБРАБОТКИ ФОТОПОЛИМЕРНОЙ ПЕЧАТНОЙ ФОРМЫ (57) Использование: в полиграфии для изготовления и обработки фотополимерных клише высокой печати, Сущность изобретения: готовую фотополимерную печатную форму облучают пучком электронов и/или у-квантов в интервале энергии 0,5 — 10 МзВ с плотностью потока частиц 10 -10 частиц/см. с в тт 12 2 течение 1 — 30 мин. 1 табл. излучения, при этом продукты ионизации и возбуждения молекул полимерных соединений распределяются по объему облучаемых печатных форм в соответствии с распределением поглощенных доз. Таким образом, подбирая соответствующее распределение и мощность дозы в облучаемом образце, можно получить новые желательные свойства фотополимерного соединения, которые не возникают без проведения радиационно-химического™ процесса. Облучение готовой полимерной формы пучком электронов и/или у -квантов позволяет расширить температурный диапазон использования фотополимерных клише до 200 С, увеличить предел упругости и модуль Юнга, повысить гигроскопичность фотополимерных печатных форм, что, в конечном итоге, улучшает. эксплуатационные характеристики фотополимерных клише высокой печати и позволяет использовать их при повышенной температуре, Предлагаемый способ обработки фотополимерной печатной формы реализован при проведении испытаний на образцах из

1838158 известных фотополимеров типа "Целлофот" и "Флексофот" следующим образом.

Пример 1. Образец печатной формы из фотополимера типа "Целлофот облучают. пучком электронов с энергией 8 МэВ в тече4 р ние 15 мин с током пучка электронов, равным

19 мкА, Измерение физико-механических параметров проводят при температуре 20 С, Пример 2. Образец печатной формы иэ фотополимера типа "Флексофот" облучают пучком электронов с энергией 10 МэВ с током пучка электронов, равным 10 мкА, в течение 25 мин. Измерение физико-механических параметров проводят при температуре 20 С, 15

Пример 3. Аналогично примеру 1.

Измерение физико-механических параметров проводят при температуре 140 С.

Режимы способа выбирались, исходя из следующих соображений: при энергии элек- 20 тронов ниже 0.5 МэВ (Ee 10 МэВ, идут фотоядерные реакции у-и, происходит активация обору- 25 дования, возникает радиационная опасность, При плотности потока электронов

Р 10 электро12 нов/см.с значительная величина поглощенной энергии приводит к радиационному разогреву и-разрушению фотополимерного клише.

При исследовании изменений физикомеханических свойств фотополимеров on- "О ределялись следующие характеристи«и, модуль упругости (модуль Юнга), предел упругости, гигроскопичность.

Данные исследований физико-механических свойств фотополимеров приведены в 45 таблице.

Из таблицы Bèäno, что для фотополимера типа "Целлофот" после облучения по сравнению с исходным образцом модуль упругости возрастает на 30-40, а предел упругости — в 4 раза. Для фотополимера типа

"Флексофот" после облучения по сравнению с исходным образцом модуль Юнга возрастает в 4,8 раза, предел упругости в 44 раза, а гигроскопичность на 50, что существенно влияет на качество оттисков. Фотополимер типа "Флексофот" после облучения становится гидрофильным, что дает возможность использовать для получения оттисков различные штемпельные краски вплоть до обыкновенных чернил без снижения качества оттисков, Испытания образца фотополимера типа

"Целлофот" при повышенной, температуре (до 150 С) показали, что модуль Юнга возрастает в 1,8 раза, предел упругости — в 3,6 раза и,если при повышенной температуре тиражестойкость необлученного целлофота равна О, то после облучения количество оттисков составляет 10 000 экз. Увеличение термостойкости фотополимера типа "Целлофот" под действием ионизирующего излучения позволит отказаться от использования металла при создании печатных форм, работающих в условиях повышенной температуры, Печатные формы, изготовленные из фотополимера типа "Целлофот" и облученные пучком электронов и/или у-квантов, согласно предлагаемому способу, работоспособны при температуре порядка

200 С и могут быть использованы в тираже более 10 000 раз без разрушения печатной формы.

Существенным фактором развития флексографской печати стало внедрение фотополимерных печатных форм. Их применение началось в 60-е годы, когда фирма «Дюпон» представила на рынок первые пластины для высокой печати «Дайкрил». Однако во флексо их можно было использовать для изготовления оригинальных клише, с которых делали матрицы, а затем резиновые формы методом прессования и вулканизации. С тех пор многое изменилось. . .

Способы изготовления

Сегодня на мировом рынке флексографской печати наиболее известны следующие производители фотополимерных пластин и композиций: BASF, DUPONT, Oy Pasanen & Co и др. Благодаря использованию высокоэластичных форм, данным способом возможна печать на различных материалах при создании минимального давления в зоне печатного контакта (речь идет о давлении, которое создается печатным цилиндром). К числу таковых относятся бумага, картон, гофрокартон, различные синтетические пленки (полипропилен, полиэтилен, целлофан, полиэтилентерефталат лавсан и др.), металлизированная фольга, комбинированные материалы (самоклеящиеся бумага и пленка). Флексографский способ используется преимущественно в сфере производства упаковки, а также находит применение при изготовлении издательской продукции. Например, в США и Италии около 40% от общего числа всех газет запечатываются флексографским способом на специальных флексографских газетных агрегатах.

Существует два типа формного материала для изготовления флексографских форм: резиновый и полимерный. Изначально формы изготавливались на основе резинового материала, и качество их было низким, что делало, в свою очередь, низким качество оттисков флексографской печати в целом. В 70-х годах нашего столетия впервые была представлена фотополимеризующаяся (фотополимерная) пластина в качестве формного материала для флексографского способа печати. Пластина позволяла воспроизводить высоколиниатурные изображения до 60 лип/см и выше, а также линии толщиной от 0,1 мм; точки диаметром от 0,25 мм; текст как позитивный, так и негативный от 5 пиксел и растровые 3-, 5- и 95 - процентные точки; тем самым позволив флексографии составлять конкуренцию «классическим» способам, особенно в сфере печати на упаковке. И, естественно, фотополимерные пластины заняли лидирующее положение в качестве формного флексографского материала, особенно в Европе и в нашей стране.

Резиновые (эластомерные) печатные формы могут быть получены способом» прессования и гравирования. Необходимо отметить, что сам формный процесс на основе эластомеров трудоемок и не экономичен. Максимально воспроизводимая линиатура составляет порядка 34 лин/см, т.е. репродукционные возможности данных пластин находятся на низком уровне и не отвечают современным требованиям к упаковке.

Фотополимерные формы позволяют воспроизводить как сложные цветовые и переходы, различные тональности, так и растровые изображения с линиатурой до 60 лин/см при довольно-таки небольшом растаскивании (увеличении тоновых градаций). В настоящее время, как правило, фотополимерные формы изготавливаются двумя способами: аналоговым — посредством экспонирования УФ-излучения через негатив и удаления незаполимеризованного полимера с пробелов при помощи специальных вымывных растворов на основе органических спиртов и углеводородов (например, при помощи вымывного раствора фирмы BASF Nylosolv II) и посредством так называемого цифрового способа, т. е. лазерного экспонирования специального черного слоя, нанесенного поверх фотополимерного, и последующего вымывания не проэкспонированных участков. Стоит отметить, что в последнее время в этой области появились новые разработки фирмы BASF, позволяющие удалять полимер в случае аналоговых пластин при помощи обыкновенной воды; или же напрямую удалять полимер с пробелов при помощи лазерного гравирования в случае цифрового способа изготовления форм.

Основой фотополимерной пластины любого типа (как аналоговой, так и цифровой) является фотополимерный, или так называемый рельефный слой, благодаря которому и происходит образование возвышающихся печатающих и углубленных пробельных элементов, т. е. рельефа. Основой фотополимерного слоя является фотополимеризующаяся композиция (ФПК). Основными компонентами ФПК, оказывающими значительное влияние на печатно-технические характеристики и качество фотополимерных печатных форм, являются следующие вещества.

1) Мономер — соединение сравнительно невысокого молекулярного веса и низкой вязкости, содержащее двойные связи и, следовательно, способное к полимеризации. Мономер является растворителем или разбавителем для остальных компонентов композиции. Изменяя содержание мономера, обычно регулируют вязкость системы.

2) 0лигомер — способное к полимеризации и к сополимеризации с мономером ненасыщенное соединение большего, чем мономер, молекулярного веса. Это вязкие жидкости либо твердые вещества. Условием их совместимости с мономером является растворимость в последнем. Считается, что свойства получаемых при отверждении покрытий (например, фотополимерных печатных форм) определяются главным образом природой олигомера.

В качестве олигомеров и мономеров наибольшее распространение находят олигоэ-фир- и олигоуретанакрилаты, а также различные ненасыщенные полиэфиры.

3) Фотоинициатор. Полимеризация винильных мономеров под действием УФ-излучения в принципе может протекать без участия каких-либо других соединений. Такой процесс называется просто полимеризацией и протекает довольно медленно. Для ускорения реакции в композицию вводят небольшие количества веществ (от долей процента до процентов), способных под действием света генерировать свободные радикалы и/или ионы, инициирующие цепную реакцию полимеризации.

Такой тип полимеризации называется фотоинициированной полимеризацией. Несмотря на незначительное содержание фотоинициатора в композиции, ему принадлежит исключительно важная роль, определяющая как многие характеристики процесса отверждения (скорость фотополимеризации, широту экспонирования), так и свойства полученных покрытий. В качестве фотоинициаторов находят применение производные бензофенона, антрахинона, тиоксантона, асцилфосфиноксиды, пероксипроизводные и т. д.

The best from the BASF

Фирма BASF Drucksysteme GmbH (Германия) является одним из ведущих изготовителей самого широкого в мире ассортимента фотополимерных пластин для высокой, глубокой и флексографской печати.

Для флексографии BASF предлагает серию пластин nyloflex, которая включает в себя: пластины для печати на этикетках (nyloflex FAE I, FAH, FAR II, MA III, ACE), пластины для прямой печати на гофрокартоне (nyloflex FAC-X и FAII), пластину для запечатки колбасных оболочек (nyloflex ME), пластину для цифровой передачи информации (digiflex II), пластину для печати УФ-красками (nyloflex Sprint) и пластину для прямой лазерной гравировки (nyloflex LD).

Пластина для печати на этикетках — nyloflex АСЕ

Пластина nyloflex АСЕ предназначена для высококачественной растровой флексографской печати в таких областях, как:

  • - гибкая упаковка из пленки и бумаги;
  • - упаковка для напитков;
  • - этикетки;
  • - предварительное запечатывание поверхности гофрокартона.

Имеет наибольшую твердость среди всех пластин nyloflex — 62° Shore А (шкалы по Шору А).

Основные достоинства:

  • - изменение цвета пластины при экспонировании — сразу же видна разница между экспонированными / не проэкспонированными участками пластины;
  • - большая широта экспозиций обеспечивает хорошее закрепление растровых точек и чистые углубления на выворотках, маскирование не требуется;
  • - короткое время обработки (экспонирование, вымывание, завершающая обработка) экономит рабочее время;
  • - широкий интервал тоновых градаций на печатной форме позволяет одновременно печатать растровые и штриховые элементы;
  • - хороший контраст печатных элементов облегчает монтаж;
  • - качественный краскоперенос (особенно при использовании водных красок) позволяет равномерно воспроизвести растр и плашку, а снижение необходимого объема переносимой краски делает возможным печать плавных растровых переходов;
  • - высокая твердость при хорошей стабильности, передача высоколиниатурных растровых переходов при использовании технологии «тонких печатных форм» в сочетании с компрессионными подложками;
  • - устойчивость к износу, высокая тираже-стойкость;
  • - устойчивость к озону предотвращает образование трещин.

Пластина показывает прекрасный краскоперенос, особенно при использовании красок на водной основе. Кроме того, она хорошо подходит для печати на шероховатых материалах.

Nyloflex АСЕ могут поставляться следующей толщины:

АСЕ 114-1,14 мм АСЕ 254-2,54 мм

АСЕ 170-1,70 мм АСЕ 284-2,84 мм

FAC-X — пластина для печати на гофрокартоне

Пластина имеет небольшую твердость (33° по Шору А), что обеспечивает ее хороший контакт с шероховатой и неровной поверхностью гофрокартона и сводит к минимуму эффект «стиральной доски». Одно из главных достоинств FAC-X — прекрасный краскоперенос, особенно для красок на водной основе, используемых при печати на гофрокартоне. Равномерная пропечатка плашек без высокого давления печати способствует уменьшению прироста градаций (растискиванию) при растровой печати и повышению контрастности изображения в целом.

Кроме того, пластина имеет ряд других отличительных особенностей:

  • - фиолетовый оттенок полимера и высокая прозрачность подложки облегчает контроль изображений и монтаж форм, при помощи липких лент, на формный цилиндр; — высокая прочность пластины на изгиб исключает отслаивание полиэфирной подложки и защитной пленки;
  • - форма хорошо очищается как до, так и после печати.

Пластина nyloflex FAC-X является однослойной. Она состоит из светочувствительного фотополимерного слоя, нанесённого для стабильности размеров на полиэфирную подложку.

Nyloflex FAC-X поставляются толщиной 2,84 мм, 3,18 мм, 3,94 мм, 4,32 мм, 4,70 мм, 5,00 мм, 5,50 мм, 6,00 мм, 6,35 мм.

Глубина рельефа пластин nyloflex FAC-X устанавливается предварительным экспонированием обратной стороны пластины на 1 мм для пластин толщиной 2,84 мм и 3,18 мм и в интервале от 2 до 3,5 мм (в зависимости от каждого конкретного случая) для пластин толщиной от 3,94 мм до 6,35 мм.

С пластинами nyloflex FAC-X можно получать линиатуру растра до 48лин/см и интервал градаций 2-95% (для пластин толщиной 2,84 мм и 3,18 мм) и линиатуру растра до 40 лин/см и интервал градаций 3-90% (для пластин толщиной от 3,94 мм до 6,35 мм). Выбор толщины пластины руководствуется как типом печатной машины, так и спецификой запечатываемого материала и воспроизводимого изображения.

Пластина для запечатки колбасных оболочек — nyloflex ME

Данный образец отличается от других многослойностью структуры. Пластина nyloflex ME предназначена для печати красками, содержащими сложные эфиры, а также для предварительной запечатки пленок двухкомпонентной белой краской.

К ее достоинствам относятся отличный краскоперенос, высокая тиражестойкость, короткое время вымывания, широкий интервал экспозиций и хорошая устойчивость к набуханию при использовании любых красок.

Пластина nyloflex ME состоит из светочувствительного фотополимерного слоя, нанесенного на стабилизирующую пленку, которая, в свою очередь, нанесена на эластичную подложку. Поставляются пластины толщиной 2,75 мм.

Глубина рельефа пластин nyloflex ME

задается толщиной рельефного слоя. Рельеф вымывается до стабилизирующей пленки. Глубина рельефа всегда составляет порядка 0,7 мм. С пластинами nyloflex ME можно получать линиатуру растра до 60 лин/см с интервалом градаций от 2 до 95%.

Большой интервал экспозиций способствует отличному закреплению таких элементов рельефа, как линии шириной 55 мкм или 2-процентные растровые тона при глубине рельефа до 0,7 мм.

Nyloflex ME не требует маскирования. Информация, содержащаяся на негативе, до мельчайших деталей и с оптимальной передачей градаций передается на фотополимерную пластину nyloflex ME. Так, например, негативные элементы (выворотка) формируются открытыми, с хорошими промежуточными глубинами. Растровые участки копируются с крутыми углами кромок.

Пластина для цифровой передачи информации

Фотополимерная пластина digiflex II была разработана на основе первого поколения пластин digiflex и сочетает в себе все преимущества цифровой передачи информации и еще более простую и легкую обработку.

Преимущества пластины digiflex Ii:

1) отсутствие фотопленки, благодаря чему возможны прямая передача данных на печатную форму, охрана природы и экономия времени. После снятия защитной пленки на поверхности пластины становится видимым черный слой, чувствительный к лазерному излучению инфракрасного диапазона. Изображение и текстовая информация могут записываться непосредственно на этом слое с помощью лазера. В местах, на которые воздействует лазерный луч, черный слой разрушается. После этого печатная форма подвергается засветке УФ-лучами по всей площади, вымывается, сушится и происходит окончательная засветка.

2) оптимальная передача градаций, позволяющая воссоздать малейшие оттенки изображения и обеспечивающая высокое качество печати;

3) низкие монтажные затраты;

4) высочайшее качество печати. Основу экспонируемых лазером фотополимерных печатных форм составляют печатные формы nyloflex FАН для высокохудожественной растровой флексографской печати, которые покрываются черным слоем. Лазерное и последующее обычное экспонирование выбираются таким образом, что достигается существенно более низкие приращения градаций. Получаются результаты печати исключительно высокого качества.

5) уменьшенная нагрузка на окружающую среду. Отсутствует обработка пленок не используются химические составы для фотообработки, замкнутые узлы экспонирования и вымывания с замкнутыми устройствами регенерации приводят к уменьшению вредного влияния на природу.

Область применения пластин для цифровой передачи информации широка. Это бумажные и пленочные мешки, гофрированный картон, пленки для автоматов, гибкие упаковки, алюминиевая фольга, пленочные пакеты, этикетки, конверты, салфетки, упаковка для напитков, картонажные изделия.

Пластина для печати УФ-красками — nyloflex Sprint

Nyloflex Sprint — новая для российского рынка пластина из серии nyloflex. В настоящий момент проходит испытания на ряде производственных полиграфических предприятий России.

Это специальная водовымывная пластина для печати УФ-красками. Вымывание при помощи обыкновенной воды имеет смысл не только с позиции защиты природы, при этом еще значительно сокращается время на обработку по сравнению с технологией использующей органический вымывной раствор. Пластина nyloflex sprint требует всего 35-40 мин на весь процесс лишения печатной формы. Вследствие того, что для вымывания нужна только чистая вода, nyloflex sprint позволяет экономить и на дополнительных операциях, ведь использованная вода может вылиться прямо в канализацию без фильтрации или дополнительной очистки. А тем, кто уже работает с водовымывными пластинами и процессорами nyloprint для изготовления форм высокой печати, даже не требуется покупки дополнительного оборудования.

Nyloflex sprint отличается очень хорошим краскопереносом, а также выдающимися результатами в области высококачественной штриховой и растровой печати. Ее областями применения являются гибкая упаковка, пакеты и этикетки.

С разрешением до 60 лин/см четко пропечатываются даже самые тонкие линии и мелкие шрифты. Идеально печатает nyloflex sprint на всех гладких материалах, например, на пакетах, этикетках или гибких упаковках из пленки. Для изготовления истины необходимы обычные этапы как ори аналоговом традиционном способе изготовления форм.

Пластина для прямой лазерной гравировки — lylollexLD

Пластина nyloflex LD была представлена фирмой BASF в мае с. г. на выставке Drupa в г. Дюссельдорфе. Эта последняя новинка, созданная BASF специально для прямой лазерной гравировки. В процессе обработки изображение и информация с помощью лазерной гравировки полимера наносятся прямо на пластину, минуя стадии предварительного экспонирования, вымывания, сушки и завершающей обработки.

Достоинства этой пластины — в сокращении этапов обработки, в качественном краскопереносе, контрастности печатных элементов, в высокой абразивной устойчивости и устойчивости к УФ-краскам и ти-ражестойкости.

На российском рынке пластина пока не применяется.

Конечный этап — печатная форма

Изготовление печатных форм происходит на формном оборудовании фирмы BASF и включает в себя следующие этапы:

1. Предварительное экспонирование обратной стороны пластины, которое определяет глубину рельефа и служит для лучшего закрепления мелких деталей рельефа.

2. Основное экспонирование — полимеризация печатного рельефа путем экспонирования УФ-света диапазона А длиной волны при 360 нм через матированный негатив под вакуумом.

3. Вымывание непроэкспонированных участков. В качестве вымывного раствора рекомендуется использовать не загрязняющий окружающую среду Nylosolv II. Однако для вымывания можно применять и любой другой раствор, присутствующий на рынке.

4. Сушка, в процессе которой улетучиваются остатки раствора, содержащиеся в печатной форме. Затем форма должна быть выдержана при комнатных условиях перед дальнейшей обработкой.

5. Дополнительное экспонирование, обеспечивающее гарантию полной полимеризации всех мелких деталей. Длительность соответствует времени основного экспонирования.

6. Завершающая обработка — облучение формы УФ-светом диапазона С, с длиной волны 254 нм для устранения липкости формы.

Необработанные пластины nyloflex хранятся в прохладном и сухом помещении при температуре от 15 до 20°С и относительной влажности воздуха около 55%.

При обработке фотополимерных пластин окна должны быть закрыты специальной пленкой для защиты от УФ-излучения солнца. Осветительные приборы в помещении также должны быть экранированы от УФ-излучения.

Изготовление печатных форм digiflex отличается от классического формного процесса наличием дополнительного этапа — испарения лазером маскирующего слоя пластины на специальном оборудовании (например, оборудовании Lazer Graver фирмы «Альфа»),

После этого пластина проходит обычные стадии предварительного экспонирования обратной стороны, основного экспонирования, вымывания, сушки, дополнительного экспонирования и завершающей обработки на формном оборудовании.